Advanced Design System 2011.01 - Numeric Components

-i.2 Agilent Technologies
Advanced Design System 2011.01

Feburary 2011
Numeric Components



Advanced Design System 2011.01 - Numeric Components

© Agilent Technologies, Inc. 2000-2011

5301 Stevens Creek Blvd., Santa Clara, CA 95052 USA

No part of this documentation may be reproduced in any form or by any means (including
electronic storage and retrieval or translation into a foreign language) without prior
agreement and written consent from Agilent Technologies, Inc. as governed by United
States and international copyright laws.

Acknowledgments
Mentor Graphics is a trademark of Mentor Graphics Corporation in the U.S. and other
countries. Mentor products and processes are registered trademarks of Mentor Graphics

Corporation. ™ Calibre is a trademark of Mentor Graphics Corporation in the US and other
countries. "Microsoft®, Windows®, MS Windows®, Windows NT®, Windows 2000® and
Windows Internet Explorer® are U.S. registered trademarks of Microsoft Corporation.
Pentium® is a U.S. registered trademark of Intel Corporation. PostScript® and Acrobat®
are trademarks of Adobe Systems Incorporated. UNIX® is a registered trademark of the
Open Group. Oracle and Java and registered trademarks of Oracle and/or its affiliates.
Other names may be trademarks of their respective owners. SystemC® is a registered
trademark of Open SystemC Initiative, Inc. in the United States and other countries and is
used with permission. MATLAB® is a U.S. registered trademark of The Math Works, Inc..
HiSIM2 source code, and all copyrights, trade secrets or other intellectual property rights
in and to the source code in its entirety, is owned by Hiroshima University and STARC.
FLEXIm is a trademark of Globetrotter Software, Incorporated. Layout Boolean Engine by
Klaas Holwerda, v1.7 http://www.xs4all.nl/~kholwerd/bool.html| . FreeType Project,
Copyright (c) 1996-1999 by David Turner, Robert Wilhelm, and Werner Lemberg.
QuestAgent search engine (c) 2000-2002, JObjects. Motif is a trademark of the Open
Software Foundation. Netscape is a trademark of Netscape Communications Corporation.
Netscape Portable Runtime (NSPR), Copyright (¢) 1998-2003 The Mozilla Organization. A
copy of the Mozilla Public License is at http://www.mozilla.org/MPL/ . FFTW, The Fastest
Fourier Transform in the West, Copyright (c) 1997-1999 Massachusetts Institute of
Technology. All rights reserved.

The following third-party libraries are used by the NlogN Momentum solver:

"This program includes Metis 4.0, Copyright © 1998, Regents of the University of
Minnesota", http://www.cs.umn.edu/~metis , METIS was written by George Karypis
(karypis@cs.umn.edu).

Intel@ Math Kernel Library, http://www.intel.com/software/products/mkl

SuperLU_MT version 2.0 - Copyright © 2003, The Regents of the University of California,
through Lawrence Berkeley National Laboratory (subject to receipt of any required
approvals from U.S. Dept. of Energy). All rights reserved. SuperLU Disclaimer: THIS
SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)

2


http://www.xs4all.nl/~kholwerd/bool.html
http://www.xs4all.nl/~kholwerd/bool.html
http://www.mozilla.org/MPL/
http://www.mozilla.org/MPL/
http://www.cs.umn.edu/~metis
http://www.cs.umn.edu/~metis
http://www.intel.com/software/products/mkl
http://www.intel.com/software/products/mkl

Advanced Design System 2011.01 - Numeric Components
ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
POSSIBILITY OF SUCH DAMAGE.

7-zip - 7-Zip Copyright: Copyright (C) 1999-2009 Igor Pavlov. Licenses for files are:
7z.dll: GNU LGPL + unRAR restriction, All other files: GNU LGPL. 7-zip License: This library
is free software; you can redistribute it and/or modify it under the terms of the GNU
Lesser General Public License as published by the Free Software Foundation; either
version 2.1 of the License, or (at your option) any later version. This library is distributed
in the hope that it will be useful,but WITHOUT ANY WARRANTY; without even the implied
warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
Lesser General Public License for more details. You should have received a copy of the
GNU Lesser General Public License along with this library; if not, write to the Free
Software Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA.
unRAR copyright: The decompression engine for RAR archives was developed using source
code of unRAR program.All copyrights to original unRAR code are owned by Alexander
Roshal. unRAR License: The unRAR sources cannot be used to re-create the RAR
compression algorithm, which is proprietary. Distribution of modified unRAR sources in
separate form or as a part of other software is permitted, provided that it is clearly stated
in the documentation and source comments that the code may not be used to develop a
RAR (WinRAR) compatible archiver. 7-zip Availability: http://www.7-zip.org/

AMD Version 2.2 - AMD Notice: The AMD code was modified. Used by permission. AMD
copyright: AMD Version 2.2, Copyright © 2007 by Timothy A. Davis, Patrick R. Amestoy,
and Iain S. Duff. All Rights Reserved. AMD License: Your use or distribution of AMD or any
modified version of AMD implies that you agree to this License. This library is free
software; you can redistribute it and/or modify it under the terms of the GNU Lesser
General Public License as published by the Free Software Foundation; either version 2.1 of
the License, or (at your option) any later version. This library is distributed in the hope
that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU Lesser
General Public License for more details. You should have received a copy of the GNU
Lesser General Public License along with this library; if not, write to the Free Software
Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA Permission is
hereby granted to use or copy this program under the terms of the GNU LGPL, provided
that the Copyright, this License, and the Availability of the original version is retained on
all copies.User documentation of any code that uses this code or any modified version of
this code must cite the Copyright, this License, the Availability note, and "Used by
permission.” Permission to modify the code and to distribute modified code is granted,
provided the Copyright, this License, and the Availability note are retained, and a notice
that the code was modified is included. AMD Availability:
http://www.cise.ufl.edu/research/sparse/amd

UMFPACK 5.0.2 - UMFPACK Notice: The UMFPACK code was modified. Used by permission.
UMFPACK Copyright: UMFPACK Copyright © 1995-2006 by Timothy A. Davis. All Rights
Reserved. UMFPACK License: Your use or distribution of UMFPACK or any modified version
of UMFPACK implies that you agree to this License. This library is free software; you can
redistribute it and/or modify it under the terms of the GNU Lesser General Public License
as published by the Free Software Foundation; either version 2.1 of the License, or (at
your option) any later version. This library is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
or FITNESS FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License for
more details. You should have received a copy of the GNU Lesser General Public License

along with this library; if not, write to the Free Software Foundation, Inc., 51 Franklin St,
3


http://www.7-zip.org/
http://www.7-zip.org/
http://www.cise.ufl.edu/research/sparse/amd
http://www.cise.ufl.edu/research/sparse/amd

Advanced Design System 2011.01 - Numeric Components

Fifth Floor, Boston, MA 02110-1301 USA Permission is hereby granted to use or copy this
program under the terms of the GNU LGPL, provided that the Copyright, this License, and
the Availability of the original version is retained on all copies. User documentation of any
code that uses this code or any modified version of this code must cite the Copyright, this
License, the Availability note, and "Used by permission." Permission to modify the code
and to distribute modified code is granted, provided the Copyright, this License, and the
Availability note are retained, and a notice that the code was modified is included.
UMFPACK Availability: http://www.cise.ufl.edu/research/sparse/umfpack UMFPACK
(including versions 2.2.1 and earlier, in FORTRAN) is available at
http://www.cise.ufl.edu/research/sparse . MA38 is available in the Harwell Subroutine
Library. This version of UMFPACK includes a modified form of COLAMD Version 2.0,
originally released on Jan. 31, 2000, also available at
http://www.cise.ufl.edu/research/sparse . COLAMD V2.0 is also incorporated as a built-in
function in MATLAB version 6.1, by The MathWorks, Inc. http://www.mathworks.com .
COLAMD V1.0 appears as a column-preordering in SuperLU (SuperLU is available at
http://www.netlib.org ). UMFPACK v4.0 is a built-in routine in MATLAB 6.5. UMFPACK v4.3
is a built-in routine in MATLAB 7.1.

Qt Version 4.6.3 - Qt Notice: The Qt code was modified. Used by permission. Qt copyright:
Qt Version 4.6.3, Copyright (c¢) 2010 by Nokia Corporation. All Rights Reserved. Qt
License: Your use or distribution of Qt or any modified version of Qt implies that you agree
to this License. This library is free software; you can redistribute it and/or modify it under
the

terms of the GNU Lesser General Public License as published by the Free Software
Foundation; either version 2.1 of the License, or (at your option) any later version. This
library is distributed in the hope that it will be useful,

but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
or FITNESS FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License for
more details. You should have received a copy of the GNU Lesser General Public License
along with this library; if not, write to the Free Software Foundation, Inc., 51 Franklin St,
Fifth Floor, Boston, MA 02110-1301 USA Permission is hereby granted to use or copy this
program under the terms of the GNU LGPL, provided that the Copyright, this License, and
the Availability of the original version is retained on all copies.User

documentation of any code that uses this code or any modified version of this code must
cite the Copyright, this License, the Availability note, and "Used by permission."
Permission to modify the code and to distribute modified code is granted, provided the
Copyright, this License, and the Availability note are retained, and a notice that the code
was modified is included. Qt Availability: http://www.gtsoftware.com/downloads Patches
Applied to Qt can be found in the installation at:
$HPEESOF_DIR/prod/licenses/thirdparty/qt/patches. You may also contact Brian
Buchanan at Agilent Inc. at brian_buchanan@agilent.com for more information.

The HIiSIM_HV source code, and all copyrights, trade secrets or other intellectual property
rights in and to the source code, is owned by Hiroshima University and/or STARC.

Errata The ADS product may contain references to "HP" or "HPEESOF" such as in file
names and directory names. The business entity formerly known as "HP EEsof" is now part
of Agilent Technologies and is known as "Agilent EEsof". To avoid broken functionality and
to maintain backward compatibility for our customers, we did not change all the names
and labels that contain "HP" or "HPEESOF" references.

Warranty The material contained in this document is provided "as is", and is subject to
4


http://www.cise.ufl.edu/research/sparse/umfpack
http://www.cise.ufl.edu/research/sparse/umfpack
http://www.cise.ufl.edu/research/sparse
http://www.cise.ufl.edu/research/sparse
http://www.cise.ufl.edu/research/sparse
http://www.cise.ufl.edu/research/sparse
http://www.mathworks.com
http://www.mathworks.com
http://www.netlib.org
http://www.netlib.org
http://www.qtsoftware.com/downloads
http://www.qtsoftware.com/downloads

Advanced Design System 2011.01 - Numeric Components
being changed, without notice, in future editions. Further, to the maximum extent
permitted by applicable law, Agilent disclaims all warranties, either express or implied,
with regard to this documentation and any information contained herein, including but not
limited to the implied warranties of merchantability and fitness for a particular purpose.
Agilent shall not be liable for errors or for incidental or consequential damages in
connection with the furnishing, use, or performance of this document or of any
information contained herein. Should Agilent and the user have a separate written
agreement with warranty terms covering the material in this document that conflict with
these terms, the warranty terms in the separate agreement shall control.

Technology Licenses The hardware and/or software described in this document are
furnished under a license and may be used or copied only in accordance with the terms of
such license. Portions of this product include the SystemC software licensed under Open
Source terms, which are available for download at http://systemc.org/ . This software is
redistributed by Agilent. The Contributors of the SystemC software provide this software
"as is" and offer no warranty of any kind, express or implied, including without limitation
warranties or conditions or title and non-infringement, and implied warranties or
conditions merchantability and fitness for a particular purpose. Contributors shall not be
liable for any damages of any kind including without limitation direct, indirect, special,
incidental and consequential damages, such as lost profits. Any provisions that differ from
this disclaimer are offered by Agilent only.

Restricted Rights Legend U.S. Government Restricted Rights. Software and technical
data rights granted to the federal government include only those rights customarily
provided to end user customers. Agilent provides this customary commercial license in
Software and technical data pursuant to FAR 12.211 (Technical Data) and 12.212
(Computer Software) and, for the Department of Defense, DFARS 252.227-7015
(Technical Data - Commercial Items) and DFARS 227.7202-3 (Rights in Commercial
Computer Software or Computer Software Documentation).


http://systemc.org/
http://systemc.org/

Advanced Design System 2011.01 - Numeric Components

SerDes Example DesSigNs . . . . . . i i e e e 15
8b10b Coder and Decoder . .. .. .. i i e e e e 16
64b66b Coder and Decoder . ... . . i ittt e e e e e e e e 19
Blind Adaptive Decision Feedback Equalizer .. ... ... ... . .. i, 22
Adaptive Decision Feedback Equalizer with Training Sequence .. ..................... 25

WMAN Example DesSigNs . . . . o ittt e et s e e e e e e e e e e e 28
Agilent Instrument Compatibility . . . . ... . e e 29
WMAN IEEE 802.16 Specifications . . . .. ... i i e e e 30
WMAN System DeSigNS . . . . v i i i it e e e e e e e e e e 31
WMAN Design Example Descriptions . . . ... . i e 45
RefErENCES . . . . i e e e e e e e 54

Numeric Advanced Comm COmMPpOoNENtS . . . . . . i i e e e e e 55
AddGUArd . . . . o e e e e e e e e 56
ConvolutionalCoder . .. .. . i e e e e e 60
L] O o Y [ 63
L G I 7T ol Yo L= o 65
Deinterleaver802D . . . . . . i e e e e e e e 66
) 1< 1= o 0 1= 69
Interleaver802 . . . . . e e e e e e e e e e 73
LoadIFFTBUffB02 . . . . . ot e e e e e e e 76
1 1= o 0 1= 79
MUXOFDMSYMB02 . . . . o ot e e e e e e e e 83
RMSE . . . e e e e e e e 87
ViterbiDecoder . .. . . e e e e e e 88

Numeric Communications Components . . .. . .. . . i it it e e e e e 93
Bb10bCoder . ... e e e e e e e e 95
8bl0bDecoder . ... . e e e e e e 97
B4b66DbCodEr . . . . . e e e e e 99
BAbB6EDbDECOdEr . . . . . e e e e e e e e e e e 103
ADPCM _C0der & v v i i e e e e e 105
ADPCM _DECOder . v ottt s e e e e e e e e e e 106
ADPCM _FromBits . . . . . i i e e e e e e e e e e e e e e e e e 107
ADPCM _ToBItS . . .o e e e e e e e e 108
AWGN _Channel . . . oo e e s e e e e e e e e e e e e 109
BliNADFE . . . . i e e e e e e e e e 111
BIINAFFE . . . . o e e e e e e e 114
BIOCKPIrediCtor . . . o o e e e e e e e e 118
CoderRS . . . e e e e e e e e e e e 120
DeCcoderRS . . . . e e e e e e e 123
DeScrambler . . . . o e e e e e e e e e 127
DESpreader . . . e e e e e e e e 129
DFE . . ot e e e e e e e e e e 130
e 135
FregPhase . . . . o e e e e e e e 140
HilbertSplit . . . . e e e e e 141
InterleaveDeinterleave . . . . . . o i e e e e e e e e e 142
Mo PSK . e e e e e e e e 143
NoiseChannel . .. . . .. e e e e e 147
NonlinearDistortion . . . . . . . i e e e e 148
PAMZ2REC . . i e e e e e e e e 149
N 0 o 150
PAMAREC . . i e e e e e e e e e 151



Advanced Design System 2011.01 - Numeric Components

PAMA XMt . . e e e e e e e e 152
PCM _BitCoder . . . i i i e e e e e e e 153
PCM _BitDECOdar . . v v i it e e e e e e e e e e e e e 154
PhaseShift . . ... e e e e e e 155
PSOK2REC . . i i e e e e e e e 156
PO 2XmMIt . . . o e e e e e e e 157
L 1 158
QAMAS IRl . o et e e e e e e e e e e e e 159
QAMILG . . e e e e 160
QAMILBDECOAE . . vttt e e e e e e e e e 161
QAMILBSICEr . v v vt it e e e e e e e e e e e 162
QAMBA . . . e e e e e e e e 163
QAMBADECOAE . . ittt e e e e e e e e 164
QAMBASIICEr . . v v it e e e e e e e e e e e e 165
RaAISEACOSING . . . o e e e e e e e e e e e e e 166
RaAISEACOSINECX . & v v v it e e e e e e e e e e 168
ReCSPpread . .. . i e e e e e e 168
Scrambler . . . e e e e e e e e e e e 171
OPrEad . . . i e e e e e e e e e e 174
TelephoneChannel . . . . . . e e e e 175
WalshCoder . ... i e e e e e e e e 177
XmitSpread . . . . . e e e e 179
Numeric Control Components . . . . . . o e e e e 180
ActivatePath . . . . . .. e e e e e 182
ActivatePath2 . . . . . . e e e e e e 183
AsyncCommUEator . . . o . e e e e e e 184
AsSynCDistribULOr . . . o e e e e e 186
BUS . o e e e e e e e e e 188
BUSMEIgE2 . . . o i e e e e e e e 189
BUSMErged . . . o e e e e e e e 190
BUSMEIgEed . . . . e e e e e e e e e e e e e e e 191
BUSMeErges . . . . e e e e e e e 192
BUSMErget . . . . e e e 193
BUSMEIgE 7 . . . o e e e e e e e e e e e e e e e e 194
BUSMErgE8 . . . . e e e e e e e e 195
BUSMEIgED . . . o i e e e e e e 196
BUSS It . . o e e e e e e e e e 197
BUSSPIIES . . e e e e e e 198
BUSSPIItA . . . . e e e e e e 199
BUSSPIIES . . o e e e e e e e 200
BUSSPIIED . . . o e e e e e e e e 201
BUSSPIIE7 . . o o e e e e e e e e e e 202
BUSSPIIt8 . . . e e e 203
BUSSPIItO . . o e e e e e e 204
Chop . o e e e e 205
ChopVarOffset . . . i e e e e e e e e e 209
ComMMIUEAEOr . . . o e e e e e e e e e e e e e e e 210
CommUEAtor 2 . . . e e e e e e e e 211
CommUEator 3 . . . e e e e e e e e e e 212
CommuUtatord . . . . e e e e e e e e e 213
DElay . . . e e e e e e 214
DEMUX . ot i e e e e e e e e e e e e e e e e e e 215



Advanced Design System 2011.01 - Numeric Components

DEMUXZ . . o e e e e e e e e e e e e e e 216
ISt bULOr . . . e e e e 217
DistribULOr2 . . . e e e e e 218
DistribUtOr3 . . . e e e e e 219
DistribULOrd . . . . o e e e e e e e e e 220
DoWnSample . . e e e e e 221
DSampleW O st . . . o e e e e e e e 222
EnableUDSample . . . . . o e e e 224
0 225
FOrK2 o ot e e e e e e e e e e e 226
FOrK &t e e e e e e e e e 227
0 2 228
FOrKS ot e e e e e e e e e 229
FOrKG . ot e e e e e e e e e 232
FOrK 7 o e e e e e e e e e e e e e e e e e 234
FOrKB .« o i e e e e e e e e 236
FOrKO & e e e e e e e 238
IEISE . ot i e e e e e e e e e e e e e 240
InitDelay . . ot e e e e e e e e e 244
MUX ot e e e e e e e e e e e e e e e 245
MUX 2 o e e e e e e e e e e e e e e e e e e e e e e e e e e e 246
REpEaAt . . . o e e e e e e e 247
REVEISE . . i e e e e e e e e e e e e e e e e 248
1= 11 =1 249
TrANSPOSE . .t i e e e e e e e e e e e e e e e e e e e e 250
UpSample . . e e e e e e e e 251
VarDelay . . o e e e e e e e e e 254
Numeric Fixed-Point DSP Components . . .. .. . ittt it et et e e e e 255
ADS YN e e e e e e e 258
ACCUMI S YN L o o e e e e e e e e e e e e 259
AdAREGSYN . . . i e e e e e e e e e 261
AdASYN . e e e e e e e e e 263
AN 2SO YN e e e e e e e e e 265
ANASYN e e e e e e e e e 266
BarShiftSyn . . . e e e e e e 268
BitFil Sy N . . e e e e e 270
BPSK YN . . e e e e e e e e e 271
BUf IS YN . . . e e e e e e e 272
BUSBMEIgE S YN . . o o e e e e e e 273
BUSBRIDSYN . . o o e e e e e 274
BUSMEIgeS YN . . o e e e e e e e e e e e e 275
BUSRIPSYN . . e e e e e e e e e e e e e 276
CastSy N . . e e e e 277
ComDbBFIESYN . . e e e e e e 278
COMPB YN . . i e e e e e e e e e e e e e e 280
COMIP SOY N o e e e e e e e e e e e e e e e e e e 281
CONSES YN L e e e e e e e e 282
CountCombSyYN & . . e e e e 283
COUN IS YN . L o e e e e e e e e e e e e e e e e 284
DiV2CIOCKS YN o o e e e e e e 285
DPRAMREGSYN . . o e e e e e e e e e e e e e e e 286
DPRAM SYN . . . o e e e e e e e e e e e e e e e 288



Advanced Design System 2011.01 - Numeric Components

DP S K S YN o o e e e e e e e e 290
DUAINC O SYN . o it e e e e e e e 292
FIRSY N & ot i e e e e e e e e e e e e e 294
FiXedGainSyn . . .o e e e e e e e e 297
FiXTOFIoatSyn . o . o e e e 298
FIoatTOFiXSYN . o o e e e e e e e e 299
FOM YN L o e e e e e e e e e e e e e e e 300
GaINSYN L . e e e e e 302
INtegratorSyN . . e e e e e e 303
LCOUN ISy N & . L e e e e e e e e e e e e e e e e e 305
MU REGSYN . . . . e e e e 306
MU S YN . o e e e e e e e 309
MUX 2SSy N . o e e e e e e e e e e e e e e e e e e e e e e e e e 310
MUX B S YN . o e e e e e e e e e e e e e e e e e e e e 311
MUXA S YN ot ot e e e e e e e e e e e 312
MUX S YN o s e e e e e e e e e e e e e 313
NaNA2S YN . e e e e e e 315
NCOSYN . o i e e e e e e e e e e e e e e e e e e 316
NOE 2SN & ot e e e e e e e e 318
NOES YN & o e e e e e e e e e e e e e e e e e 319
OQPSKSYN ottt it e e e e e e e e e e e e 320
O 2SN L e e e e e e e 322
L )V o 323
PIAD QP SK S YN & v it e e e e e e e e e e 325
PO KBSy N . o e e e e e e e e e e e e e 327
QPSS K SYN . e e e 329
RaMREGSYN . . . e e e e e e e e e e e e e e e 331
RaAM S YN . . o e e e e e e e e e e e e e 333
REGS YN o o e e e e e 335
ROMREGSY N . . o e e e e e 337
ROM S YN . . e e e e e e e e e e e e e 339
SerialFIR SN . . o e e e e e e e e e 341
ShiftREegPPSYN . . e e e e 343
ShiftREgP S SYN . . . e e e e e e e 345
ShiftREgS P SYN . . . e e e e e e e e e e 346
SINECOSINESYN . . o i e e e e e e 347
SINKRES D SYN & o i i e e e e e e e e e e e e 349
SINKSEIMSYN & L . e e e e e e e 350
SUDREGSYN . . . e e 351
SYMEIRSYN . . e e e e e e 353
O 2 YN & st i e e e e e e e e e e e e e e e e e e 356
KO S YN L it i e e e e e e e e e e e e e e e e e e e e 357
=1/ ) g (=T 015 Y/ o 359
Numeric Logic Components . . . . . o i e e e e e e e e e 360
DFF o e e e e e e e e e e e 361
DIVBYN . . . e e e e e e e e e e e e e e 363
JKFE e e e e e e e e 365
LFS R . e e e e e e e e e 367
o T o 374
LOGICAN D . . o e e e e e e e e 375
LOGICAN D 2 . . ot i e e e e e e e e e 376
LogiCInVerter . . . . e e e e e e e e e e e e e e e e e e 377



Advanced Design System 2011.01 - Numeric Components

LogicLatch . . .o e e e 378
LOGICNAND . . o e e e e e e e e 380
LOGICNAND 2 . . . o e e e e e e e e 381
LOGICN O R . o s e e e e e e e e 382
LOGICN O R 2 . . o o i e e e e e e e 383
LOGICOR . . o i e e e e e e e e e e e e e 384
LOGICOR 2 . . . i e e e e e e e e e e e e e 385
LOGICXNOR . . i e e e e e e e e 386
LOgICXNOR 2 . . o e e e e e e e e e 387
LOGICXOR . L e e e e e e e e e e 388
LOGICXOR 2 o . i e e e e e e e 389
MU Dl . o e e e e e e e e 390
=] o 391
TestEQ . . . o e e e e e e e e e 392
TestGE . . . o e e e e e e e 393
I3 394
TEStLE . . . e e e e e e e e e 395
3 396
TeStNE . . . o o e e e e e e e e e e e e e e e e e e 397
Numeric Math Components . .. . . . e e e e 398
ADS L e e e e e e e e e e 400
Add .. e e e e e e e e e 401
A2 . e e e e e e 403
AdACX &t e e e e e e e e e e e e e 404
AdACX2 L e e e e e e e e 405
AdAFIX . e e e e e e e e 406
AdAFIX2 . . e e e e e e e e e e e e 408
AdAINt . . e e e e e e e e e 410
AddINt2 . . e e e e e e e 411
< = o T 412
AVEIAGE X . i i e e e e e e e e e e e e e e e e e e 413
AverageCxWORfset . . . . . o e 414
C0S o e e e e e e e e e e e e e e e 415
DB . . e e e e e e e e e e 416
DIVBYIN . . . e e e e e e e e e e 417
EXD o e e e e e e 418
] o Yo 419
- T o 420
GaINCX . . i i e e e e e e e e e e e e e e e e e 421
GaiNFiX . e e e e e e e e e e e e e e e e e e 422
GainInt . . e e e e e e e e 424
Integrate . . . . . e e e e e e e e 425
o 426
Math . e e e e e e e e 426
MathCX . .o e e e e e e e e e 429
MaXMIiN L e e e e e e e e e e e e e 432
MOodUIO . . . o e e e e e e e e e e e e 433
ModUloInt . . . o e e e e e e 434
MDY o o e e e e e e e e e e e e e e e e 435
MDY 2 o o e e e e e e e e e 436
MDY C X vttt e e e e e e e e e e e e e e e e e e e e e e 437
MDY C X2 ot i e e e e e e e e e e e e e e e e e e e e e e 438



Advanced Design System 2011.01 - Numeric Components

MY X vt e e e e e e e e e e 439
MPYFIX2 o e e e e e e e e e 441
MPYINE & o e e e e e e e e e e e 443
MPYINEZ . . e e e e e e e e e e e 444
ReCIPrOCal . . o e e e e e 445
1] 5 o 446
5] 5 447
S S L e e e e e e e e e e e e e 448
] 5 449
1] 5. 5 G 450
S C X2 . . i i e e e e e e e e e e e e e e e e e e e 451
S C X3 o i i e e e e e e e e e e e e e 452
S C XA . . it e e e e e e e e e e e e e 453
SN L i e e e e e e e e e e e e e e e e e e 454
1 1 455
15 1 456
15 o | 457
SUD . L e e e e e e e e e 458
SUD X i e e e e e e e e e e e 459
SUDFIX o ot e e e e e e e e e e 460
SUDINE . . e e e e e e e e 462
LI 463
11 T [ 464
VAMANCE . . . o i e e e e e e e e e e e e e e e e e e 465
Numeric Matrix Components . . . . . . i e e e e e e e 466
ADS M L e e e e e e e e 468
AddZ2 M L e e e e e e e e e 469
AdACX2 M L e e e e e e e e e e 470
AdACX M L e e e e e e e e e 471
AddFIX2 M L e e e e e e 472
AdAFIX M L e e e e e e e e 474
AddINE2 M L e e e e e e e e 476
AddINt M L e e e e e 477
Add M L e e e e e e e e e 478
AVASArErr M L e e e e e e e e e e e e 479
Conjugate M .. e e e e e 480
Delay M . e e e e e e 481
(=1 1 < 482
GaiNFiIX_ M L e e e e e e e e e e e e e e e e e e e 483
GainNINt M . e e e e e e e e e e e e e 485
GaiN M L e e e e e e e e e e 486
Hermitian M . . o e e e e e e e e e e e e e e e e 487
INVEIrSECX M . . s it e s e e e e e e e e e e e e e e e e e e 488
INVErsEFiIX M L L e e e e e e e e e e e e e e e 489
INverseInt M . . o i e e e e e e e e e e e e e e e e e 491
INVErSE M L e e e e e e e e e e e e e 492
Kalman M o e e e e e e e e e e e e e 493
MDY CX M L e e e e e e e e e e 495
MY FI X M L e e e e e e e e e e e e e e e e e e e 496
MPYINE M L e e e e e e 498
MDY M e e e e e e e e e 499
MpyScalarCX_M . . o e e e e e e 500



Advanced Design System 2011.01 - Numeric Components

MpyScalarFiX _M .o e e e e 501
MpyScalarInt M . . e e e e e 503
MpyScalar M .. e e e e e e e 504
MXCOM M L e e e e e e e e e e e e e e e e e e e 505
MXDECOM M L L e e e e e e e e e e e e e e e e e e e e 506
PaCKCX M . o e e e e e e 508
PacCKFiX M L e e e e e e e e e e e e e e e e 509
PackInt M .. . e e e e e e e e e e e e e e e e e 510
PaCK M o e e e e e e e e e e e 511
SampleMean_M . . . e e e e e e e 512
SUD X M i e e e e e e e e e e e 513
SUDBFIX M . e e e e e e e e e e 514
SUBINE M L e e e e e e e e e 516
SUD M e e e e e e e e 517
SUDMXCX M .t e e e e e e e e e e e e e e e e e e 518
SUDMXFIX M . e e e e e e e e e e e e e 519
SUBMXINE M . . e e e e e e e e 520
SUDMX M L s e e e e e e e e e e e 521
SV D M L e e e e e e e e e 522
TablelX M o e e e e e e 524
TableInt M L o e e e e e e e e e e e e e e e 526
Table M L e e e e e e e e e e e e e e e 528
ToEpPltZOX M o e e e e e e e 530
ToeplitZFIX _ M . o e e e e e e 531
ToeplitzZINt M . . o e e e e e e 533
Toeplitz_ M o e e e e e e 534
TranspPOSElX M . . o i e e e e e e e e e e e e e e e e 535
TranspOSEFiX_M . . e e e e e e e e e e 536
Transposelnt M . . .. e e e e e e e e 537
TranNSPOSE _M . o i e e e e e 538
UNPKCX M Lt e e e e e e e e e 539
UNPKEIX M o e e e e e e e 540
UNPKINt M o e e e e e e e e e e e 541
UNPK M L e e e e e e e e e 542
Numeric Signal Processing Components . ... . . . . it ittt e e e e e e 543
AULOCOr . . e e e e e e e e e e e e e 545
Bigquad . . .. e e e e e e 547
BiquadCascade . . ... . . i e e e e e e e 549
BIOCKAIIPOlE . . . e e e e e e e 550
BIOCKFIR . . . e e e e e e e 550
BlockLattice . . .. . i e e e e e e 554
BlockRLattice . .. . . e e e e e e 556
BUIg . . o e e e e e 558
CoNVOICX o e e e e e e e e e e 560
CoNVOIVE . . e e e e e e 561
L 0 111 500 o ol 563
DelayEstimator . . . . . o e e e e e 565
D 8 I 567
N I 569
FIR o e e e e e 571
1 573
1 575



Advanced Design System 2011.01 - Numeric Components

Hilbert . . o e e e e e e e e e 578
LI . ot e e e e e e e e e 580
81 582
I R FiX o o i it i e e e e e e e e e e e e e 584
Latlice . . . o e e e e e e e e e e e e 587
eV UL & o e e e e e e e e e e e e e e e e e e e 589
LM S e e e e e e 591
LMS  CX vt it i e e e e e e e e e 593
LMS LAk . v v it it e e e e e e e e e e e e e e 595
LMS OsCDe . . . i e e e e e e 597
PattMatch . . . . . e e e e e 599
RLattiCe . . e e e e e e e e e e e e 601
SlAWINAVG . . o e e e e e e e e e 603
NUMEBIC SOUNCES . i i i ittt e e et e e e et et e e e e et e e e e e e e e e e e e e e 604
BIES . . e e e e e 606
oM EXEXD .« v vt v oo e e e e e e e e e e 608
(0 1 1= 609
L0 1 1= (G 610
L0 0 1] o 611
CoNStINt & . . e e e e e e e e e 612
0 613
DataPattern . . . . . e e e e e e e e e e e 614
DiagonallxX M . .. o e e e e e e 615
DiagonalFixX _ M . . e e e e e e e 616
Diagonallnt M . ... e e e e e e e 617
Diagonal M .. e e e e e e 618
G 619
o= o 620
IdentityCX M L e e e e e e e e e e e e 621
IdentityFiX_ M o e e e e e e e 622
IdentityInt M . . . e e e e e e 623
Identity _M o e e e e e 624
| I 1= 10 17 = o 625
I D _UNifOrm & o e e e e e e e e 626
ImpulseFloat . . . . . . e e e e e e e e 627
1 o 628
AN T8 T = ol q o 7= Lo o 629
N[0T = Lo o 1T ol 630
RaMPFIX . . e e e e e e e e e e e e 632
RampFloat . . . . e e e e e 634
RampPINt . . . e e e e e e e e e e e e e 635
ReadFile . . . . e e e e e 636
ReadFilePreProC . . . . i e e e e e 637
RECE . . e e e e e e e e e e e e e e e e 638
RECE X & o v i e e e e e e e e e e e e e e 639
RECECXDOPPIEr . . i e e e e e e 640
2 = o 2 641
SINEGEN . . . e e e e e e e e e e e e e e e e e e 642
WaVeF O . . . e e e e e e e e e e e e e e e e e e e e e 643
WaveFormM CX . . o e e e e e e e e e 645
WiNAOW . .o e e e e e e e e 647
Numeric Special FUNCHIONS . . . . . o .o e e e e 649



Advanced Design System 2011.01 - Numeric Components

AdaptLinQuant . . . .. e e e e e e e e 650
0] 0 8] 0 = 651
DEadzZone . . . . e e e e e e e e e 653
Dirichlet . . . e e e e e e e e 655
EXpand . .. e e e e e e e 656
LatchClocked . . . . . . e e e e e 658
LimiE . e e e e e e e 659
LiNQUaNtIdX . . . .o e e e e e e e e e e e 661
0 = 662
OrderTWoInt . . .ot e e e e e e e e e e 663
PCWzZLiNEar . . . o e e e e e e e e e e e e e 664
Polynomial . . . .. e e e e e 665
QUANE . . e e e e e e e e e e e e 665
QUANTIAX . . vt e e e e e e e e e e e e 669
QUANTIZEr . . e e e e e e e e e e 671
QuUaNtizer2D . . . . e e e e e e e e e e e e 672
SChMItET g . . . o e e e e e e e e e e e e 675
LI o = 677
TablelX . . o e e e e e e e 678
Tablelnt . . . e e e e e e e e e 679
T0ggle . o e e e e e e e e e 680
L 0 T 681

14



Advanced Design System 2011.01 - Numeric Components

SerDes Example Designs

This section includes the following Serializer/Deserializer (SerDes) application example
designs:

8b10b Coder and Decoder

64b66b Coder and Decoder

Blind Adaptive Decision Feedback Equalizer

Adaptive Decision Feedback Equalizer with Training Sequence

15



Advanced Design System 2011.01 - Numeric Components

8b10b Coder and Decoder

Location: /examples/DSP/serdes_wrk

Objective

This example demonstrates 8b10b coder and decoder (8B/10B Encoding and 8B/10B
Decoding) simulation capability.

Setup

Data bytes and Control bits (K) are read from files. In bit serial transmission, for each

octet data in an 8-bit sequence, the LSB is assumed to be transmitted first, while the MSB
is transmitted last.

8b1

'r:r=_. cnample d
ot In bat Sérial trg r quir
ma*-,--nnjr.r.:- ¢"|~="rr-="|| '..."u-—t"-r ::flﬁ':."nﬂ 1 3*

_". O, D

K Bits e

L e
Pu EL Y

[ et
Sl

Pi=hiorg o
Wrgm F e N 1 FLiepds Dt Sy aied
Contred berviptmes TES St Dt ol Trm St .
Encoder

s Dt Teattie D@ e OClor oy

Lol Lo,

Er L
S Kt bearee |

"'”'"" = . D D > = m——
-. - e |
D ' s - i fr ]
ToagaTiny - ) =
. [
Fibg Viarmges B0 100,_sima_fvtass 1o

R B T e B S
Drata (8 bits)y Qut (10 bits) L i e
gl - ——
= = Comtrol i 1 EL
[ s
W B g (nm b Dot it M Tt =0
Fots Mol Porr bora Piot=Nora Do it M=o e 1D
a1 e w Diat ok Tomag S it
o Frgva Yo | Tope Framas W 1- 1 Wagen Framva Rlum 10 |

Dt ot Troom Thops 100 woree
Cortrnd taradgtons TES Contrilrmadibara TEY Control Hrtadiaors TEL

Analysis

16



Advanced Design System 2011.01 - Numeric Components

Index int{ InBytes) int{DecodedBytes)
0 BC BC
1 C5 C5
2 BC BC
3 50 S0
4 BC BC
5 Z5 I
] BC BC
7 50 S0
g BC BC
9 Z5 I
A BC BC
B 50 S0
= BC BC
(] Z5 I
E BC BC
F 50 a0

10 FB FE
11 74 T4
12 g 8

@l d=InBytes-DecodedBytes

1.0E-300

2.0E-301

I.J|I|I..II.J

d

oo

-5.0E-301

JI.JI.I|I|I.

A1 0E0F—————— 11—

(=}
[ %]
[=]
&=
[=]
[ 1]
[=]
[a]
[=]

100

Iniden

Source bytes before 8b10b Encoder and Decoded bytes after 8b10b Decoder

17



Advanced Design System 2011.01 - Numeric Components

Indesx ink{ Ctridits) int{ DecodedCirBits )
0 1 1
1 0 0
2 1 1
3 0 0
4 1 1
3] 0 0
G 1 1
7 0 0
g 1 1
9 0 0

10 1 1
" 0 0
12 1 1
13 0 1]
14 1 1
15 0 0
16 1 1
yIF 0 1]
18 0 0
19 0 0

Zelyl ctri=CtrBits-DecodedCtrBits

1.0E-300

5.0E-301

IIIJ|.JIII

on

ctri

-5.0E-30

l]l]ll]l]

-1.0E-300 T T T T T T T T T
20 40 &0 80 100

=

Index

Control bits before 8b10b Encoder and Decoded Control bits after 8b10b Decoder

Notes/Equations

Read the dds to see the transmitted bytes and control bits are correctly decoded.

18



Advanced Design System 2011.01 - Numeric Components

64b66b Coder and Decoder

Location: /examples/DSP/serdes_wrk

Objective

This example demonstrates 64b66b coder and decoder (64B/66B Encoding and 64B/66B
Decoding) simulation capability.

Setup

Data bytes and Control bits are read from files. In bit serial transmission, for each octet
data in an 64-bit sequence, the LSB is assumed to be transmitted first, while the MSB is

transmitted last.
64b66b coder & decoder

This example demanstrates s4bs6b coder and decoder simulation capability
HNote: in bit senal transmisseon, for each octet data in 3 64-bit sequence, the L5B
5 assumed to be transmitted first, while the MSE is transmitted last

S bt B )

' Decoder
--------

E -—.*;E .=

Eight octet (64 Bits) E Moomass " 1 :::“::"

- S—
G iy 3

A b e

Analysis

19



Advanced Design System 2011.01 - Numeric Components

Index Nt InBytes) int{ DecodedBytes)
0 [j 7
1 T 7
2 T 7
3 [ 7
4 7 7
5 [j 7
6 T 7
7 [ 7
g FB FE
9 8 g
A 0 0
B 20 20
- 77 77
D 5 5
E 38 3
F E E

10 &B aB
11 ] 0
12 0 0

l:I=In Bytes-DecodedBytes

1.0E-300

5.0E-301—

= 0.0

-5.0E-301

-1 0E-300 11—

v vttty
100 2000 3000 400 500 eOQ  FOO O 800

(=

Index

Source bytes before 64b66b Encoder and Decoded bytes after 64b66b Decoder

20



Advanced Design System 2011.01 - Numeric Components
Index int{ CtrBits) int{ DecodedCtrEits)

o — — — — — — —

60 00 =8 O N P 00 1d = O 0 0 = O R 4 L b = D
COODOO OO0 D = = = b=t =
COOOCC OO O D s - —— -

ctrl=CtrBits-DemdedctrEits

1.0E-300

5 0E-3M

ctrl
[=}
=

-5.0E-301

-1.0E-300 ————— 11—
100 200 300 400 500 600 700 800

=]

Irclex

Control bits before 64b66b Encoder and Decoded Control bits after 64b66b Decoder

Notes/Equations

Read the dds to see the transmitted bytes and control bits are correctly decoded.

21



Advanced Design System 2011.01 - Numeric Components

Blind Adaptive Decision Feedback Equalizer

Location: /examples/DSP/serdes_wrk

Objective

This example demonstrates basic SerDes simulation capability with an interactive user
interface. 64b66b encoder, decoder and Blind DFE are illustrated.

Setup

A random bitstream is created and a 64b66b encoder is applied. These encoded data are
modulated as NRZ (BPSK) data. Then in time-domain, an equivalent low-pass channel is
applied which introduces ISI (intersymbol interference). At the receiver side, the time-

domain waveform is sampled (1x, 2x or more ratio), and a blind DFE equalizer is

employed to remove ISI. This example allows the user to interactively adjust the channel
characters, equalizer parameters and instantly see the results on a continually updating
eye diagram.

Blind DFE equalizer

Thas example demonsirates basic SERDES simulation capabaity wilh an inderacie user

irlerace. A random Bilstream s created and & B4bGED encoder is appled. These endoded

dala sre modulabed as NRZ (BPSE) data. Then in lime-dorman, an equivalent |oéwpass

channgl it applided whath miroduces 151 (nermmbol inderfenence). Al e ricibeir $idi, the
tiFrve-doamain wiavedodrn IS samgled (1 2 of mone ralio), and & blind DFE egualider s

emplayed 10 rérmdvid IS1 This exarmpli Sllows i USer 10 inbéractvily Sdust e channg

charachers, oqualzer paramslirs &nd inslaniy Soe e resulls on & continudlly updalng e disgram
Huts

1. Wanabbes in VAR pel Delayifar Jmuma Bl se delay i inkaduced in B medel Channel_UpSampler
1 tha Type in this model s pel 1o Pehy®haseliter oo Linear, peme delays wall be mbedvond 203 thare delays
should ba sd8ed 1o Vi Channailelay

=] - |
cHNE= |
) Source ) Channel

Receiver

p— | [ e j"%
=R i e , Wl

O |— —
E E E:::'“.
smsomms,
= . -
=
i %
=) ; :

O Bl e B

Analysis

22



Advanced Design System 2011.01 - Numeric Components

Eve Before Equalization r;|@|gl

File WView

Eye Before Equalization

amplitude
1.00

0.00

-1.00 = ==

0.00 .50 100 1.50 2.00

sample

Eye before Equalization.

Eye After Equalization
File View

Eye After Equalization

amplitude
1.00

000 ¢

=10

0.H) 50 L.00 150 2.00

sample

Eye after Equalization.

23



Advanced Design System 2011.01 - Numeric Components

Index int{SrcBits) int{RxBits)
B4 a o
B5 1 1
B& 1 1
&7 a o
53 a o
B3 1 1
70 a o
71 a o
72 1 1
73 1 1
74 a o
75 a o
Fi=] 1 1
77 1 1
7a a o
73 a o
=] 1 1
81 a o
g2 a o
83 1 1
84 a o
85 a o
85 a o
a7 1 1
s a o
83 a o
a0 a o
91 1 1
92 a o
93 1 1

&g d=SreBits-RiBits

1.0E-300

5.0E-301

= 0o

-5 0E-301

-1.0E-300 IIII|IIII|IIII|IIII|IIII|IIII|IIII

0 1000 2000 3000 4000 5000 G000 YOOO

Inde:x

The SrcBits are correctly decoded after equalization.

Source bits before 64b66b Encoder and Decoded bits by 64b66b Decoder

Notes/Equations

Observe the eye diagram change before and after equalizer. Read the dds to see the
transmitted bits are correctly decoded.

24



Advanced Design System 2011.01 - Numeric Components

Adaptive Decision Feedback Equalizer with Training
Sequence

Location: /examples/DSP/serdes_wrk

Objective

This example demonstrates basic SerDes simulation capability with an interactive user
interface. 8b10b encoder, decoder and DFE with training sequence are illustrated.

Setup

A random bitstream is created and an 8b10b encoder is applied. These encoded data are
modulated as NRZ (BPSK) data. Then in time-domain, an equivalent low-pass channel is
applied which introduces ISI (intersymbol interference). At the receiver side, the time-
domain waveform is sampled (1x, 2x or more ratio), and a DFE equalizer is employed to
remove ISI. This example allows the user to interactively adjust the channel characters,
equalizer parameters and instantly see the results on a continually updating eye diagram.

DFE equalizer

Thit @xarnple demonsirabes basic SERDES smulalon capsbdly with an nberactve uter

rderince. A random bdstresm i creaed and an 8b1 00 encoder i sppled. Thete sncoded dals
are moculated an MR (BFSH) daba. Then in beme-domaen, s squeislent low-pacs channd iz
appbed whech infroduces 151 (nfergymbol interference). Al the recensts fice, thi teme-tdoman
wiveiorm iz sampled (1, 20 or mone ratio), and & DFE equalmed i3 employed bo remaove 151

Thitt ecarmiple slltrent e uter b0 inderaciively Sdut the channel charstiens, squal@er parameters
A ANy S T resuls O & COntnualy Lpdaling e Gagram

Hata

1. Inthiz enample, varables n VSR pof Delay Adudt o ooly puiable for OF E with LS and RLS

I Wit dafanl seimngs, no Selay i neroduced nthe maodel Channal U Samphir. Bt if the Typs i thes modsl

i 9t 13 Poly Prase Filter o Lewar, o Selays ol ba rtroduced 3 thasd deliys ehould b 3508 16 war ChannalDeliy

—{]

Source _ Channeél

BH-8-0d

Lo

Analysis



Advanced Design System 2011.01 - Numeric Components

Eye Before Equalization

File WView

Eye Before Equalization

amplitude
100}

0.00 .50 LO0 150 2.00

sample

Eye before Equalization.

Eve After Equalization

File View

Eye After Equalization

amphitude
1.00

0.00 ¢

-1.00

(00 0.50 1L.00 L50 2.00

smunple

Eye after Equalization.

26



Advanced Design System 2011.01 - Numeric Components
Index inti SrcBits) int(RxBits}

L

—
= 0O0=000=000=00=00==00==00=00==0
— s e s s e () s N T s s s s e s s s s

T 'I L I T | T I L | T
0 1000 2000 3000 4000 5000 6000 7000 000 9000

Index

Source bits before 8b10b Encoder and Decoded bits by 8b10b Decoder

Notes/Equations

Observe the eye diagram change before and after equalizer. Read the dds to see the
transmitted bits are correctly decoded.

27



Advanced Design System 2011.01 - Numeric Components

WMAN Example Designs

WMAN example designs created in ADS are based on the IEEE 802.16d Standard. These
designs (constructed using the new Numeric Advanced Comm components, basic ADS
components, and Matlab components) focus on the physical layer of WMAN systems.
These are intended to be a baseline system for designers to get an idea of what nominal
or ideal system performance would be. Evaluations can be made regarding degraded
system performance due to system impairments that may include nonideal component
performance.

Access the designs from the ADS Main window: File > Open > Example > Com_Sys >
WMAN_802_16d_TX_wrk.

The ADS2004A designs focus on transmitters: Test WMAN_RFSource for testing a DUT
under a WMAN frequency division duplex downlink system; Test WMAN_CodedSignals for
generating fully-coded signals; and, Test. WMAN_ESG for downloading WMAN data to an
ESG. Receiver designs will be addressed beyond ADS2004A.

28



Advanced Design System 2011.01 - Numeric Components

Agilent Instrument Compatibility

These WMAN designs can be used for downloading data to Agilent instrument through
ESG_E4438C_Sink or CM_ESG_E4438C_Sink. WMAN data can drive Agilent ESG
instruments such as E443xB or E4438C to generate RF signals. Using these RF WMAN
signals from an E4438C, WMAN device under test (DUT) can be tested. Basic system

performances can be measured using Agilent 89600 Series Vector Signal Analyzer (VSA)
for spectrum as well as waveforms.

The table below lists instrument models and Firmware revisions.

Agilent Instrument Compatibility Information

WMAN Designs ESG Models VSA Models
SpecVersion=802.16d,Dec. 2003 E443xB, Firmware Revision B.03.75 89600 Series, software version 5.0

For more information about the ESG series digital and analog RF signal generators, visit
http://www.agilent.com/find/ESG

For more information about the 89600 series vector signal analyzers, visit
http://www.agilent.com/find/89600

29


http://www.agilent.com/find/ESG
http://www.agilent.com/find/ESG
http://www.agilent.com/find/89600
http://www.agilent.com/find/89600

Advanced Design System 2011.01 - Numeric Components

WMAN IEEE 802.16 Specifications

IEEE 802.16a was initiated for WMAN systems. The revised version IEEE 802.16d [1]
specifies the air interface of a fixed (stationary) point-to-multipoint broadband wireless
access system providing multiple services in a wireless metropolitan area network. The
standard includes a particular PHY specification applicable to systems operating at 2- to
11-GHz. The 2- to 11-GHz air interface has options such as WirelessMAN-SCa,
WirelessMAN-OFDM, WirelessMAN-OFDMA, and WirelessHUMAN.

WMAN standards for both WirelessMAN-OFDM and WirelessMAN-OFDMA have physical
layers based on OFDM. OFDM transmits data simultaneously over multiple, parallel
frequency sub-bands and offers robust performance under severe radio channel
conditions. OFDM also provides a convenient method for mitigating delay spread effects. A
cyclic extension of the transmitted OFDM symbol can be used to achieve a guard interval
between symbols. Provided that this guard interval exceeds the excess delay spread of the
radio channel, the effect of the delay spread is constrained to frequency selective fading of
the individual sub-bands. This fading can be canceled by means of a channel
compensator, which takes the form of a single tap equalizer on each sub-band.

IEEE 802.16d OFDM physical layer settings are listed in the table below.

OFDM Physical Layer Specifications

Specification Settings

Information data rate 4-70 Mbps

Modulation QPSK OFDM, 16QAM OFDM, and 64QAM OFDM
Error correcting code Reed-Solomon plus Convolutional Code
Overall Coding rate 1/2, 3/4, 2/3

Basic FFT Size 256

Number of subcarriers 200, DC nulled

Number of Pilot tones 8

Cyclic Prefix (or Guard Interval) (1/32,1/16,1/8 and 1/4 symbol period

30



Advanced Design System 2011.01 - Numeric Components

WMAN System Designs

WMAN system design basic components include signal sources, channels, receivers, and
measurements. Signal sources and measurements based on WirelessMAN-OFDM are the
focus in ADS2004A.

Signal Sources

IEEE 802.16d FDD DL signal sources are provided in the example workspace. Based on
the 16d Standard, a WMAN 16d downlink PHY PDU is defined (see OFDM Frame Structure
with FDD DL) that starts with a long preamble for PHY synchronization. The preamble is
followed by a frame control header (FCH) burst. The FCH burst is one OFDM symbol long
and is transmitted using QPSK rate 1/2 with the mandatory coding scheme.

The FCH is followed by one or multiple downlink bursts, each transmitted with different
burst profiles. Each downlink burst consists of an integer number of OFDM symbols, and
its burst profiles are specified by a 4-bit DIUC in the DL-MAP. DIUC encoding is defined in
the DCD messages.

OFDM Frame Structure with FDD DL

time

-

frame r-1 framen frame n+1 | frame n+2 |

—

[ DLsubfame -

DL PHY'FDOU E|

I Zne or more multiple DL bursts, |
eachwith diferent burst profiles .

|P1'EE|TI:\E |F\::|—|||::|_|:|.ra#1 |-- - [prorgam]
T -—
- - | - -~ - .
- n =
- I .:rm::m.l—nl‘ = =|miec PO | P
Tre OFDM smbd | - )
-7 with kniown burst profile - *
CLFr | DL, | g P Heacer A meg EEWBd CRE
Fref: | DCO,1ECD | optiad) Ebtes (opiord (opore]

-—

e - .

-
Fae 1D | Lengh |HCS
dbits |[12Hts |SHts

With the OFDM PHY, a PHY burst (downlink or uplink), consists of an integer number of
OFDM symbols carrying medium access control (MAC) messages, i.e., MAC PDUs. To form
an integer number of OFDM symbols, a burst payload can be padded by the bytes OxFF.
The payload is then scrambled, encoded, and modulated using the burst PHY parameters
specified by the 16d Standard.

The example designs are to aid in understanding the WMAN 802.16d transmission system

and to find its basic performance in the physical layer. Simulation will generate single
bursts of data, formatted for downlink in the mandatory coding schemes.

31



Advanced Design System 2011.01 - Numeric Components
The figure below shows an OFDM frame structure for the WMAN FDD DL system in the
Test_ WMAN_CodedSignal example; this figure highlights the main components at the sub-
system level. (Refer to Fully-Coded Signal Generation for details regarding this design.)

WMAN FDD DL System in ADS: Test_ WMAN_CodedSignal

Q@ o Pilot

DL Data R s g I % tion
” ’gﬂﬁ_’ 1:. ....... . —_— 'E""::IEN*

wa_ton MWy Y . .F*H---l—----b@ "’| T R EREASTR Lol TEER
:

Aayrcrb s Trad @

r
Padfdn - Ayt

& 1l kS UL AHE

armibar

l.ong Preamble Generation
g9

Friesmbile 2

Frozmbia 1

idle Zenaratinn

Sacu ko FesBed

T mrr Tredark

Measure-
ments

Test WMAN_ CodedSignal.dsn

e P s WIMAN 802 16d Transmitter System
L A o, et Ly - "i . with RateiD=2 Fully coded Signats

To understand WMAN FDD DL signhal generation, basic components for constructing sub-
systems will be described, then sub-system components such as preamble generation,
FCH channel, data generation, OFDM modulation, multiplexing, and measurements for
WMAN systems will be described.

32



Advanced Design System 2011.01 - Numeric Components
Basic Components

This section describes the basic components used in the designs; for details regarding
each design, refer to WMAN Design Example Descriptions.

Data Modulation

After bit interleaving, data bits in both FCH and DL data channels are entered serially to
the constellation mapper. Gray-mapping is needed for data modulation and the
constellations are specified in Section 8.3.3.4 in 802.16d. In the WMAN examples, Mapper
(Numeric Advanced Comm library) provides Gray-mapped QPSK, 16QAM and 64QAM
modulations.

Pilot Modulation

Pilot subcarriers are inserted into each data burst in order to constitute the symbol and
these are modulated according to their carrier location within the OFDM symbol. A PRBS
generator will be used to produce a sequence. The polynomial for the PRBS generator is X

114 X9+ 1.

The pilot modulation value for OFDM symbol k is derived from w | . On the downlink,

index k represents the symbol index relative to the beginning of the downlink subframe;
on the uplink, index k represents the symbol index relative to the beginning of the burst.
For uplink and downlink, the first symbol of the preamble is denoted by k=1. Downlink
and uplink initialization sequences are shown in PRBS for Pilot Modulation. For the
downlink, this results in the sequence 11111111111000000000110... where the third 1 (w
3 =1) will be used in the first OFDM downlink symbol following the frame preamble. For

each pilot (indicated by frequency offset index), BPSK modulation will be derived as
follows:

DL:C gg=C 3 =Cg=Cyy=1-2wg and C3=C_;=C3=C;;=1-2w,

UL:C gy = C 33 = C3=C33=C = Cgg = 1-2wp and C 3=C_j3=1-2w,

PRBS for Pilot Modulation

mM=8 =8

Imglz=ton 61 11 11111 111

et 01 01 010101

1|2(2|4|S|68(7 1Al

—

)
)
o

W

33



Advanced Design System 2011.01 - Numeric Components
To implement the pilot PRBS sequence in ADS, an LFSR component is used with
parameter settings: Seed=2047 (corresponding to the initial sequence: 111111111
1 1) and FeedbackList="11 9". The random data generated from the LFSR can be recorded
as a data file; a WaveFormCx component is used to read this data and output as the PRBS
sequence for pilot modulation.

Multiplexing for Frame Structure

In the WMAN examples, the AsyncCommutator component with BusMerge2 is used to
multiplex 2 different data/signals/preambles as shown in WMAN FDD DL System in ADS:
Test WMAN_CodedSignal. With BusMerge3, AsyncCommutator can be used for
multiplexing 3 data/signals/preambles and with BusMerge4 for multiplexing 4
data/signals/preambles.

Channel Coding Components

Channel coding components will be used for both FCH and data channels. Key components
for channel coding include a scrambler component, forward error correction (FEC)
component, and an interleaver component.

The Scrambler component scrambles data with the appropriate LFSR initialization for
uplink or downlink.

The shift-register of the randomizer is initialized for each new allocation. The PRBS
generator is shown in Scrambling Data Generation. Each data byte to be transmitted is
sequentially entered into the randomizer, MSB first. Preambles are not randomized. The
seed value is used to calculate the randomization bits, which are combined in an XOR
operation with the serialized bit stream of each burst. The randomizer sequence is applied
only to information bits.

Scrambling Data Generation

— 1| 2[3|4|S|6|T|& |90 M p2asnd 1S

a—

===yl B }LB =

The bits issued from the randomizer are applied to the encoder. On the downlink, the
randomizer is re-initialized at the start of each frame with the sequence: 100101010
0000O00O.

To implement the scrambler, an LFSR component is used with parameter settings:

Seeds=38144 (corresponding to initial sequence 100101000000 0)and
34



Advanced Design System 2011.01 - Numeric Components

FeedbackList="15 14". The random data generated from the LFSR can be recorded as a
data file; a WaveFormCx component is used to read this data and output as the scramble
sequence.

WMAN FEC, consisting of the concatenation of a Reed-Solomon outer code and a rate-
compatible convolutional inner code, supports uplink and downlink. BTC and CTC support
is optional. The Reed-Solomon convolutional coding rate 1/2 is used as the coding mode
when requesting access to the network and in the FCH burst. Encoding is performed by
first passing data in block format through the RS encoder.

Reed-Solomon encoding is derived from a systematic RS(N=255, K=239, T=8) code using

GF(2 8), where N is the number of overall bytes after coding, K is the number of data
bytes before coding and T is the number of the data bytes that can be corrected. 802.16d
systems uses much smaller code blocks by puncturing the large code blocks down to the
required size.

In the WMAN_CodedSignals example a CoderRS component is used to generate the RS
code based on 802.16d.

Each RS block is followed by the binary convolutional encoder with native rate of 1/2, a
constraint length of 7, using polynomial codes to drive its code bits; the encoder is
illustrated below.

Convolutional Encoder, Rate 1/2

[T
-
w OUEpLE, Gy =17 00

.
“OUpUE, 57 =1 3500

Convolutional coded data will be punctured before interleaving. Puncturing patterns and
serialization order used to realize different code rates are given in Inner Convolutional
Code with Puncturing, where 1 denotes a transmitted bit, 0 denotes a removed bit, and X
and Y are in reference to Convolutional Encoder, Rate 1/2.

Inner Convolutional Code with Puncturing

35



Advanced Design System 2011.01 - Numeric Components

Code Rates
Rate '1/2 |2/3 3/4 5/6
dfree |10 6 5 4
X 1 10 101 10101
Y 1 11 110 11010

XY | X1Y1 | X1Y1Y2 | X1Y1Y2X3 | X1Y1Y2X3Y4X5

Channel Coding Rates gives the block sizes and the code rates used for different
modulations and code rates. As 64QAM is optional, modulation codes are implemented
only if modulation is implemented.

Channel Coding Rates

Modulation [Uncoded Block Size Coded Block Size Overall Coding RS Code |CC Code
(bytes) (bytes) Rate Rate

QPSK 24 48 1/2 (32, 24, 4) |2/3
QPSK 36 48 3/4 (40, 36, 2) |5/6
16QAM 48 96 1/2 (64, 48, 8) 2/3
16QAM 72 96 3/4 (80, 72, 4) |5/6
64QAM 96 144 2/3 (108,96, 3/4

6)
64QAM 108 144 3/4 (120, 108, |5/6

6)

An interleaver is used for coded signals. All encoded data bits are interleaved by a block
interleaver with a block size corresponding to the number of coded bits per the allocated

subchannels per OFDM symbol N chps® The interleaver is defined by a 2-step permutation:

the first ensures that adjacent coded bits are mapped onto nonadjacent subcarriers; the
second ensures that adjacent coded bits are mapped alternately onto less or more
significant bits of the constellation, thus avoiding long runs of low reliable bits. The
Interleaver802 component performs the 2-step interleaving for the WMAN system.

The sub_RS_CC shown in FEC Subnetwork sub_RS CC demonstrates how to generate the
fully-coded signal using an RS-CC coding scheme based on 802.16d.

FEC Subnetwork sub_RS_CC

Caonnvodutional Coder

O‘_.'/f/' b ’ Eiﬁer ! Ly / > c;::::lr“ﬂ FPune _.‘_

Port Port

Bit=Talnt CoderRS IntToBits sub_PuncRSCC Irtedeawverd02

Punc —}I

sub_Puncturing

EVAR

This subnetwork includes a Reed-Solomon encoder component CoderRS, a convolutional
encoder component ConvolutionalCoder, and interleaver component Interleaver802. Two

subnetwork puncturing components were built for this design; by default sub PuncRSCC is
36



Advanced Design System 2011.01 - Numeric Components
activated and sub_Puncturing is deactivated.

e The sub_PuncRSCC subnetwork shown in sub_PuncRSCC Puncturing for CC Code
Rate 2/3 is used for puncturing coded data for CC code rate 2/3 only (see Channel
Coding Rates). If all CC code rates need to be supported, several subnetworks are
needed using an IfElse component to switch the subnetwork for different RatelD.

e The sub_Puncturing subnetwork shown in sub_Puncturing Puncturing for All CC Code
Rates supports all CC code rates defined in 802.16d.

To import Matlab functions for puncturing, a MatlabLibLink Function parameter is
specified to the Matlab function rsccpunc.m that is created based on the puncturing
given in Channel Coding Rates. This simple Matlab m file can be found in
WMAN_802_16d_TX_wrk/data. For details regarding MatlabLibLink, refer to MATLAB
Cosimulation Introduction (ptolemy) in the ADS Ptolemy Simulation (ptolemy)
documentation.

sub_PuncRSCC Puncturing for CC Code Rate 2/3

y

O‘—I“H—H—r—{:

Port

"'j>—r+l-—»:?"“f‘—p—C>

Port

Distributor BusSplit2 Bushierge? Aeync Commutatar

\;:—H-—»—f—<_"

Distributor Bus Split2

sub_Puncturing Puncturing for All CC Code Rates

et @ v
N

Const

Part
Fack_h Bushergel htlab Lits Link UnPhlrt_M

Preambles

All preambles are structured as either one of two OFDM symbols as specified in Section
8.3.3.6 Draft IEEE 802.16d Std [1].

The first preamble in the downlink PHY PDU (as well as the initial ranging preamble)

consists of two consecutive OFDM symbols (the combination of the two OFDM symbols is

referred to as the long preamble). The first OFDM symbol uses only subcarriers indices
37



Advanced Design System 2011.01 - Numeric Components
that are a multiple of 4. As a result, the time domain waveform of the first symbol
consists of 4 repetitions of 64-sample fragment, preceded by a cyclic prefix (CP). The
second OFDM symbol uses only even subcarriers, resulting in a time domain structure with

2 repetitions of a 128-sample fragment, preceded by a CP. The time domain structure is
illustrated below.

Downlink and Network Entry Preamble Structure

Pl|le & s s | 1m0 1z=m
EIENEED ,
-l ——————— 8- —
T 7 T 7

The frequency domain sequences for all full-bandwidth preambles are derived from the
sequence:

Pa”('lOOlOO):{l'J, 1_jl _1_jl 1+jl 1_jl 1_jl _1+jl 1_jl 1_jl 1_jr 1+jr _1_j/ 1+jl 1+jl _1_jl
1+jl -1-jl -1-jl 1-jl -1+jl 1-jl 1-jl -1-jl 1+jl 1-jr 1-jl '1+j/ 1'jr 1-jl 1-jl 1+jl -1-jl 1+jr 1+jr
_1_jl 1+jl _1_jl _1_jl 1_jl _1+jl 1_jl 1_jl _1_jl 1+j/ 1'j/ 1'j/ '1+j/ 1'j/ 1'j/ 1'jr 1+jr '1'j/ 1+j/
1+jl _1_jl 1+jl _1_jl _1_jl 1_.jl _1+jl 1+jl 1+jl 1_j/ _1+jr 1+jr 1+jr _1_j/ 1+j/ 1+j/ 1+j/ _1+jr
1-jl -1+jl -1+jl 1-jl -1+jl 1-jl 1-jll+jl -1-jl -1'jr -1-jl '1+jr 1-jl '1'jr '1'j/ 1+j/ -1-jl -1-jl
-1-j, 1-j, -1+j, 1-j, 1-j, -1+j, 1-j, -1+j,-1+j, -1-j, 1+j, 0, -1-j, 1+j, -1+j, -1+j, -1-j, 1+],
1+jl 1+jl _1_jl 1+jl l_jl 1_jl 1_jl _1+jl _1+jl _1+j/ '1+j/ 1'j/ '1'j/ 'l'j/ '1+j/ 1'j/ 1+j/ 1+j/
_1+jl 1_jl 1_jl 1_jl _1+jl 1_jl _1_jl _1_jl _1_jl 1+jI1+jI 1+jr 1+jr _1_jr _1+jl _1+j/ 1+j/ _1_jl
1-jl 1-jl 1+jl -1-jl -1-jl -1-jl 1+jl -1-jl -1+jl '1+j/ -1+jl 1-jl 1-jl 1'jr 1-jl -1+jl 1+jl 1+jl -
1_jl 1+jl _1+jl _1+jl _1_jl 1+jl 1+jl 1+jl _1_j/ 1+j/ 1'j/ 1'j/ 1'j/ '1+jr '1+j/ '1+j/ '1+j/ 1-
jl _1_jl _1_jl 1_jl _1+jl _1_jl _1_jl 1_jl _1+jl _1+jr _1+j/ 1_jr _1+j11+jr 1+jr 1+jr _1_j/ _1_jl -
1'j/ -1-jl 1+jl 1-jl 1-.]}}

The frequency domain sequence for the 4 times 64 sequence P 4x64 is defined by:

J2x 2% conj(Pyp; (R)) ®moda = O

Py cap) =

mod4 * 0

The frequency domain sequence for the 2 times 128 sequence P EVEN is defined by:
’UEKPA_LL(‘%:' kmodf =0

P T S —
EVEN(k) { 0 kmod2¢ﬂ

Long Preamble Generation shows generation of the long preamble for a WMAN FDD
downlink transmitter.

« Data file Preamble_1_16d.txt (located at WMAN_802.16d_TX_wrk/data) based on
the full-bandwidth preambles and 4 times 64 sequence equations can be used for the
frequency preamble with 4 times 64 sequence. This Preamble 1 will be generated by
using a WaveFormCx component referring to data file Preamble_1_16d.txt.

e Using another WaveFormCx component referring to data file Preamble_2_16d.txt
based on full-bandwidth preambles and 2 times 128 sequence equations, Preamble 2
with 2 times 128 sequence will also be generated.

38



Advanced Design System 2011.01 - Numeric Components

BusMerge2 and AsyncCommutator components are used to multiplex Preamble 1 and

Preamble 2. The long preamble through LoadIFFTBuff802, FFT_Cx, and AddGuard form
OFDM symbols with guard interval.

Long Preamble Generation

Preamble 2 C

Const

iE;;jTultiPIex Preambles OFDM Modulation
Cx

Add Guard

WigweFam

e —“LHK&—H%D:-;—H FFT

| #dd Guard
I : Bushferge? feyncCommutator  Load|FFTBUff80Z  FFT Cx 1=
i

WrgweFom Cx

Preamble 1

FCH Structure

As specified in Section 8.3.4.1 Draft IEEE 802.16d Std [1], the FCH contains downlink

frame prefix to specify the burst profile and length of downlink burst 1. Downlink frame
prefix fields are:

« Rate_ID Defines the burst profile of the following burst. Encoding is specified in OFDM
Rate ID Encoding.

e Length Number of OFDM symbols (PHY payload) in the burst immediately following
the FCH burst.

« HCS An 8-bit header check sequence used to detect errors in the downlink frame
prefix.

OFDM Rate ID Encoding

Rate_ID Modulation RS-CC Rate

QPSK 1/2

QPSK 3/4

16QAM 1/2

16QAM 3/4

64QAM 2/3

64QAM 3/4

6 -15 Reserved

The basic content of the FCH symbol is the downlink frame prefix implemented in sub_FCH

(sub_FCH FCH Structure). In the FCH, key parameters RateID and Length are included in
the header. The HCS generation can be modeled by a CRC check, where the transmitter

39

u W N~ O




Advanced Design System 2011.01 - Numeric Components
takes the Rate_ID and Length bytes as the input of the CRC encoder and outputs the HCS

code.

As can be seen in Scrambling, Channel Coding, and Mapping for FCH Symbol, the FCH
symbol from sub_FCH will be scrambled by the scramble sequence from ReadFile and
LogicXOR2, channel coded through sub_RS_CC channel coder, mapped by Mapper, then
ready for framing the WMAN signal. (Scrambler, RS-CC channel coding, and mapping were
discussed in the section Basic Components.)

sub_FCH FCH Structure

— ] Padding
Cansl [—Pm

b

Constint

Y R A
Length Sorsl [—m—im >+ PN ——__

b ] —i v Fort

Canal —H/ Conatint Buzhlerged AzynoCammutatar

</ _ DLAUL-MAP

Conztint IntToBits

Rate_ID HCS
S PR NS BN =2
] CRC
@—.’—.’ / — “2\\ Encock [
y o
Constint e Buszherge? AzyncCommutator  CRC_Coder
Scrambling, Channel Coding, and Mapping for FCH Symbol

/;CH —h-_

- el
zub_FiZH RI_CCl—p————p [ |——
L Mapper

(./ﬁ_eu?‘\ LogicHOR2 Mapper

.\\- ——— L8 sub_RS_CC M2
Ful E/)’ w11
ReadFile MEYh=1

R3

FCH

Downlink Burst Generation

The sub_Data, shown in sub_Data Downlink Burst Generation, generates the WMAN
downlink burst (formed by MAC Header, MAC Msg, and Padding). The input data stream to
the modulation is selected as random data with a specific data length. In Scrambling,

40




Advanced Design System 2011.01 - Numeric Components
Channel Coding, and Mapping for Data Symbols, packed data is scrambled by ReadFile
and LogicXOR2, channel-coded through sub_RS_CC, mapped with Mapper, and ready for

framing the WMAN signal. (Scrambler, RS-CC channel coding, and mapping were
discussed in the section Basic Components.)

sub_Data Downlink Burst Generation

Padding

(/1.3;'1 :\—.-
]

Conztint

MALC
Msg

T <« AA
\u;—H>++r—»D ——_
Bit=

— v Part
Busherge3 AsyncCommutator
hAC
Header
I/C;n sk —.r
Conztint

Scrambling, Channel Coding, and Mapping for Data Symbols

.'/-”- !
rol
N,
sub_Data A - )
Data \ : —i—:\;’ ee or R S
Mapper
LogicXOR2 M
- S ar
-""N?\ L7 AszyncDistnbutor BusSplit2 o e MSF‘F-E‘
Q- __p INt B9 o
ol NSYM=NSYM
ReadFile
B2

OFDM Modulation

The WMAN physical layer is based on OFDM modulation.

41



Advanced Design System 2011.01 - Numeric Components
An OFDM symbol is made up of subcarriers, the humber of which determines the FFT size

as illustrated in OFDM Symbol. WMAN subcarriers types include:

o Data subcarriers for data transmission.
« Pilot subcarriers for various estimation purposes.
e Null subcarriers (no transmission at all) for guard band and DC subcarrier.

The guard band (illustrated in OFDM Symbol Time Structure) enables the signal to
naturally decay and create FFT brick wall shaping.

AT

Inverse-Fourier-transforming creates the OFDM waveform; this time duration is referred
to as the useful symbol time T ,. A copy of the last Tg of the useful symbol period CP is

used to collect multipath while maintaining the orthogonality of the tones. OFDM Symbol
Time Structure illustrates this OFDM symbol structure in the time domain.

OFDM Symbol Time Structure

e -
) IE
iz

-l

-

OFDM Modulation shows OFDM modulation in ADS. Downlink data and FCH signal through
channel coding and mapping are multiplexed. MuxOFDMSym802 then multiplexes pilot
and data carriers to form WMAN OFDM symbols in the frequency domain. LoadIFFTBuff802
and FFT_Cx then perform an inverse-FFT to form the WMAN OFDM symbols in the time
domain. AddGuard adds a guard interval to complete the OFDM symbols.

OFDM Modulation

42



Advanced Design System 2011.01 - Numeric Components

DL Data

k
i [
I, F | ;!
Y 1
sub_Dma j F——. - [
T T T R 1 -
thappar
et 1 N o
f; ) LogicXOR2Z S rs Dlest bt or Bues Splie 2 b RS CC Wappar X ‘-\f
h ) o [ T =
i —p .
RexiFie Bushlergel Bty e CoMmimanaor
T
i [
I, J
sub_FCH Bl CC i >
thapper
e Logic XOR2 sub RE CC kapper
] PP
.| T
wfile
Foaad F i
Ewspi —P
-
Pilot
-
—  F Modulation
aa FA
\_. > '\.\’: Lo _‘""‘::: _r . ':::, s
- > | R EN B P
RexdFile syt o Dt Aibitor Bus Splie =
#aid Guard
bl OF DMWtSyma0?  LoadIFFTBufi®02  FFT_Cx

Measurements

Measurements are provided for waveforms, spectrum, power, and constellation.

TimedSink models are directly used to display waveforms for preamble, FCH, medium
access control data, and whole framed signals.
SpectrumAnalyzerResBW is used to measure the spectrum for the WMAN signals.

Signal power is measured in the region that does not include signal idle. The total_pwr
expression in the data display window is used with two data display markers for specifying
region. For CCDF, WMAN downlink frame can be measured by using power_ccdf in the
data display window with two data display markers for specifying the region to be
measured as shown in Examples.

For the WMAN constellation measurement, sub_WMAN_Constellation is used. As shown in
sub_ WMAN_ Constellation Constellation Measurement this design integrates RF
demodulation, OFDM demodulation, demultiplexing for Data and SIGNAL, and sinks for
displaying Data as well as Signal constellations. NumericSink Constellation_data displays
16QAM constellation for data and BPSK Constellation for the pilot; NumericSink
Constellation_sig displays FCH SIGNAL constellations.

43



Advanced Design System 2011.01 - Numeric Components

sub_WMAN_Constellation Constellation Measurement

RF Demodulation

GROUND

SRES
it

4
¥

Tirmad To Float
L]

DEM =
Q_'EI [ »— Q -

TeABEa A Dermog ectTals Gutay
R 4]
> >
-
SRE TreedToFlost
F i+
GROUND
iR Wi iR
. Em Emz 4 Vorr
OFDM Demodulation
B - bl FFTI—p NSl . &hﬁ_
. i e L as R I i g N R .
~ ey 'E e FFT L faxyne Distnbaor Commigator?
—P*  acyncDistributor s Splad i o Buis Spit4 c4
PeyncDistibutor Duspind 7 i
™ Bi1
[m e

Demultiplexing | ==.

Congtelltion_data

L .
"""b' b

Aayr Distnbutor Bus Spled
- L3

L L

Fumeric Sink
Conghellation_gig




Advanced Design System 2011.01 - Numeric Components

WMAN Design Example Descriptions

The WMAN_802_16d_wrk includes: Test WMAN_CodedSignals for fully-coded signal
generation; Test_ WMAN_RFSource for transmitter test; and Test WMAN_ESG for
downloading a WMAN signal to an ESG. These designs are described in the following
sections. Simulation will generate single bursts of data, formatted for downlink in the
mandatory coding schemes. (The optional FEC features are not supported.)

Fully-Coded Signal Generation

Test_WMAN_CodedSignals demonstrates how to build an OFDM frame structure for the
WMAN frequency division duplex downlink (FDD DL) system in ADS; the schematic is
shown in Test WMAN__CodedSignal Schematic.

The main components are provided at the subsystem level and include long preamble,
frame control header (FCH) and FDD DL data generation, OFDM modulation, multiplexing,
RF modulation, and measurements. Signals are fully coded by RS-CC encoding and framed
based on the 16d Standard.

An RF modulator for modulation of the fully-coded WMAN signal to the RF carrier
frequency is followed by an RFGain power amplifier as the DUT.

To show system performance in time as well as frequency domains, TimeSink and
SpectrumAnalyzerResBW are used for both input and output of the DUT.

e In the time domain, the amplitude of the framed WMAN signal is displayed first, total
power and CCDF are then measured using total_pwr and power_ccdf expressions;
simulation results are shown in Power and CCDF Measurement Results.

e In the frequency domain, WMAN signal spectrum is measured for both input and
output of the DUT; simulation results are shown in Spectrum Measurement Results.

Test_WMAN_CodedSignal Schematic

45



Advanced Design System 2011.01 - Numeric Components

@ @ Pilot
DL Data ) &

Long Preamble Generation

Preamble 2

Corw |

MultiPlex Preambles  OFDM Modulation 24 G“*”d_
A FF1 '

AaEommully LW PTG AT G

Bushergel

Preamble 1

|dle Genaration

LIS AT e B

Measure-

RF Modulation ments Test_WMAN_CodedSignal.dsn

g . ..|> - ,.] z o] | wemrmmenes WMAN 802.16d Transmitter System
- = with RatelD=2 Fully coded Signals

sFEGomaLnie NGl CaTeRea [ aInHF e

DUT Y

Timrdink

Power and CCDF Measurement Results

46



Advanced Design System 2011.01 - Numeric Components

- K .
i1 e Wme=91 92usen WWhAAN Signal Tatsl Powe
time=2.078uszec B Wl 776
rrgg(ﬂF_\;‘j.—E ] WY B Eiglld' al DT Inow madg; _'\"Ij— ........... R B T
P et P .
'IZI—-
}I Power (2205 Tar DT Zealpal Signal
i I
161 \\
h
== \
tive, uzec .}'i' iE2
e |
38 \
3 rd
trne=2 ES7usec tma=9181uzec 1R, !
magiMess Vi=2.5931] wWadAN Signal st DUT OutpuimagMeas Vi=5 245
12
10+ 1E4 T T T T T T T T 1
o A4 4 a0 & 6 4 D 1] K B G 3
I
e P
L Mote: Llze Markers, miom2 and m3.md to selact
= s saction of data for measurag CCCF and
5 totzl Power
- ;

REELELLEDLLEER T EEE:

time, usec
Spectrum Measurement Results
WMAN 802 16d Spectrum - DUT Input WMAN 802 16d Spectrum - DUT Output
il - il
54 54
A= 10+
RIS A5+
= 20 = 20
§ = §
2301 a0
5-35— 5_35_
A0 -400=
A5 A5
50+ 50
S55— S5
'mnd.&d&h}h}dddd.}d.&u 'muﬁdddd.}dd.ﬂddddh
# 4 9 8 8 88 ERZEENEE #8 8 8BERESRZEEBRERER
Frequency (GHI) Frequency (GHz)

Default settings for basic signal information are listed below.

Default Settings for WMAN Measurements

47



Parameter
FSource
SourceR
Source Power
Bandwidth
RateID

Data Length
FFT size

DL Frame Time
Guard Interval
Idle Interval

Data Sub-
carriers

Pilot Carriers

Measured
Frames

Advanced Design System 2011.01 - Numeric Components

Descriptions

Source carrier frequency
Source resistor

Source power

System bandwidth

Rate ID

Data length in bytes

FFT size

FDD Downlink frame time
Guard interval

Idle interval time

Number of subcarriers for
data

Number of subcarriers for
pilot

Number of frames
measured

Transmission Test

Default Setting
2.4 GHz

50 Ohm

20 dBm

20m MHz

2 16QAM, coded block size 48, uncoded block size 96, overall

coding rate 1/2
256

512

92 us

1/4

2 us

200

Test WMAN_RFSource tests WMAN transmission; the schematic is shown in
Test WMAN_RFSource Schematic.

Test_WMAN_RFSource Schematic

=

[\

AN 302 16d
Deesign Information

Mameric

Humeric Sink

AN

A 16d

T T TE]
[ Tachr

sub UMAN 302 16dRF

@Vﬁﬂ

Y
Y

SplttarR ChtAmp

@ WAR

sub WILAN_802_16d_TX_Info_RF

—
I OF I i

SplitterRF

DOF

SpectrumAnahyzerRes Bid

©

Tirmeesd Sind

— ] ot

)

sub_WhdAN_Constellation

E Wy
_— >
P :_' o | > Fres BV
rimclar u
Enw Ot Selector SplitterRF I I_m
) : SpectrumnalyzerFes Bl
RF
N — SplitterRF =]
—»—»| F @
- @ N

Timed Sink

The top level of this schematic consists of: WMAN source ( sub_WMAN_802_16dRF ); DUT
(CktAmp with EnvOutSelector); and measurements.

48



Advanced Design System 2011.01 - Numeric Components

sub_WMAN_802_16dRF is a local subnetwork component to generate a partially-coded
WMAN signal. By pushing into this subnetwork, we can see the design is the same as the
signal source in Test WMAN_CodedSignal Schematic, except there is no FEC in
sub_WMAN_802_16dRF. For the transmission test, basic performance including spectrum,
power, CCDF, and constellation measurements will produce the same results with or
without FEC.

Key parameters defined in Signal_Generation_Vars and Measurement_Vars, provide an
easy way to configure the transmitter at the top-level design. The DUT can be replaced by
customer's DUT that will then be measured for performance.

The RF Envelope measurement is used to show the time envelope and spectrum of each

field in the 802.16d RF signal frame: preambles, FCH and DL Data fields. Two signals are
tested, the RF source signal at the input of the RF DUT and the Meas signal at the output
of the RF DUT. RF envelope time and spectrum measurements are implemented for each
signal. Results are shown below.

Time Envelope and Spectrum of Each Frame Field

RF_V Envelope Volts vs Time w/ Burst Structure RF_V Spectrum for Burst Structure
. IEEEBDZ 164 Waveform IEEERDZ A Bd Wavefarm
5 m
= 102 .
ks 3 -

) A5 A0 £ i 4 i 15 F.]

Frocpsency (MHT)
. Freamble 1 - Prearnble 1
o :EI z?l: ||'."|".'.‘\"‘.'.‘\'.'.“,‘."-u‘\'.".“h"‘.‘\".'.*:‘.‘l AR
- , . WiE: \ i
SR L, ok a2 L L L - -
F 3 4 5 4 7 [ 49 10 1 12 ] As Ao 5 o 3 1h 15 &
Tt {Lessi ) Fraquency (MHZ)
Preamble 2 Preamble 2

i
( ﬁ % ppeie ’f“""'“'5"""f‘""*""_“‘"'("“r"'r/f'ﬂll
ke i 1_

oA AN N A AN ANl ANA © =
- T T T - T T T T I

g T 3 z T

Time: {u2ec) Frecuency (MHz)
|
. SIGNAL . SIGNAL
5 10 & % P T T
I-‘gl 5] | it _.' \
. '*'L'*"mkm;\}‘ww.mw’-%ﬂ-.u'-aﬁ’MW'u‘M-Mﬂn, ¥ ma— —
= ] FE T ] n -m s K] E o g 1 13 ]
Teme (UsaC) Frequency (MHI)
DATA DATA
1% '«‘E 1
s :
J gl . |
L fehla ttar Lk e ik o B T e 3 ) N

- EEREFEEELEELE! -
Tene (uge) - Frequency (WHz)

SpectrumAnalyzerResBW is used to measure the spectrum for the WMAN signals. Results
are shown below.

49



Advanced Design System 2011.01 - Numeric Components
Spectrum Measurement Results

WMAN_802_16d_TX Test Bench - Spectrum Measurement

RF FSource /{1 MHz) RF Fowar dBm RF H RF FSource 7 {1 MHz) Meas H

2400.000 20,000 50,000 2400.000 50.000

WLAN 802 16d Spectrum - RF WLAN 802 16d Spectrum - Meas

0
- i L &
&
] t U
_-,10' 3 -
£ ] £
g 15 | g-
5 .20 5.
. | F
& % / | @
2 /f \\ \"\»
35. ™ L‘“‘»....,__H : gl
.l.:
A N S A
g 3 3 8 82323 ERE88 s BB 2 7
Frequency (GHD Frequency (GHD

Power and CCDF measurement results are shown in Power and CCDF Measurement
Results. The downlink burst can be measured by using the power_ccdf measurement
expression based on the DUT input and output waveforms.

Power and CCDF Measurement Results

50



1
tTme=2.EI?E usec
mag(RF_)=6.115

Advanced Design System 2011.01 - Numeric Components

WIAN Signal at DUT Input

i
tirme=21 03usec
mag(RF “)=5511

WtAMN Signal Total Power

RF Pin RF Fout
12 0102 0.05=G
i. Powrer CCDF for DUT Output Signal
% 1
E
TRRPRR T RTTY FPPTIUS W ITRPRRT T 7 W W P oY &1 :
S A Bee8RIEER SRR RERBATE “-;‘:
==
lirme, USEC }O:_ﬁ I‘I:'
' ez
55 \
UU
mJ md
time=5, 203usec time=54 7Busec 1E.3
magMeas_V)=5.917] wmaN Signal at DUT Outpujmag(Meas v)=5.939 '|
10 !
1E4 T T T T 1
o 20 A5 Al 5 1} 5 i[1]

5_

magtea

tirme, ugec

dB -
Mote: Use Markers, ml-ma and m3-md to select
a section of data for measunng CCDF and

total Power

Constellation measurement results shown below include BPSK constellation for pilot signal,
QPSK for FCH, and 16QAM for medium access control data.

Constellation Measurement Results

Constellation at DUT Input Constellation at DUT Output

10 120
-q o -] Q p
08 100 @ . e »
- [+]
06— BD-_ [ ] -
o En_
0.4 1
o4 o a [+ a 40—
2] 1B | L 2 L [
] 20
(=] - 4
E l].l:l—f:» "_E“ I'J—. L] L
02 -20—
e o o 1 ® L ] L ] | ]
04 -40—_
i 60
06— )
i 80— & -
03— 100
e i ) . T e -» L [ ]
" T 1 1 1 T T -120 T T T T T T T T T 1
Ao s o5 g4 02 0o o2 o8 10 120100 .80 .60 .40 .20 0 20 40 &0 80 100 120

51

Real




Advanced Design System 2011.01 - Numeric Components

Signal Downloading to ESGc

Test_ WMAN_ESG generates and downloads a WMAN signal to an Agilent ESG signal
generator; the schematic is shown below.

Test_ WMAN_ESG Schematic

Wk 3021 6d
De=ign Information
o

sub_WMAN_502_16d_TX_Info

WA
| apziea —W a

—

) Signal P > > n;m
L] /_H !
sub_WMAN 502 16dRF

CxToRect CM_ESG_E4438C_Sink

EARCGEN EARLG &) var | DF I

OF

The RF signal generated by sub_ WMAN_802_16dRF is converted to I and Q data through
CxToRect and sent to CM_ESG_E4438C_Sink to download data to the ESGc (E4438C). The
downloaded framed signal can drive ARB signal generator in ESGc for generating a test
signal for WMAN system, sub-system, and component tests.

A WMAN power amplifier DUT can be tested using this WMAN signal. Basic system
performances can be measured using Agilent 89600 Series Vector Signal Analyzer (VSA)
for spectrum as well as waveforms.

Key Parameters

Each design in WMAN_802_16d_TX_wrk contains VAR blocks for ease of setting key
parameters. Parameter settings are described here.

Signal_Generation_Vars:

e FSource specifies RF carrier frequency.

e SourcePower specifies source output power in dBm or W.

e BandOption specifies system bandwidth 1.75, 3.5, 7, 14, or 28 MHz; values are
BandOption=0, 1, 2, 3, 4, respectively. Other bandwidths are not supported. If
bandwidth < 0, set BandOption=0; if bandwidth >4, set BandOption=4.

o Rate_ID specifies data modulation and channel coding types. Channel Coding Rates
lists RateID parameters of 802.16d associate with coding rate per modulation. For

52



Advanced Design System 2011.01 - Numeric Components
example for RateID=2, modulation type is specified as 16QAM and overall coding rate
is 1/2.

« Datalength is used to set the number of data bytes in a frame (or burst). There are 8
bits per byte.

e OversamplingOption sets the oversampling ratio of 802.16d RF signhal source. Options
from O to 4 result in oversampling ratio 1, 2, 4, 8, 16 where oversampling ratio = 2
OversamplingOption  1f gyersampling ratio < 0, set OversamplingOption=0; if
oversampling ratio >4, set OversamplingOption=4. If the oversampling ratio = 2 2 =
4 and the simulation RF bandwidth is larger than the system bandwidth by a factor of
4 (e.g. for Bandwidth=14 MHz, the simulation RF bandwidth = 14 MHz x 4 = 16
MHz). The FFT size is determined by OversamplingOption. FFTsize=256 x 2
OversamplingOption  \when OversamplingOption=0, 1,2,3,4,
FFTsize=256,512,1024,2048 and 4096.

« IdleInterval specifies the idle interval between two consecutive frames when
generating an 802.16d signal source.

e GuardInterval is used to set cyclic prefix in an OFDM symbol. The value range of
GuardInterval is [0.0,1.0]. The cyclic prefix is a fractional ratio of the IFFT length. In
802.16d, GuardInterval=1/32, 1/16, 1/8, 1/4 of the useful OFDM symbol time.

Measurement_Vars (Test_ WMAN_RFSouce and Test._ WMAN_CodedSignals)

« FMeasure specifies the carrier frequency for the measurement.

e Carriers specifies the number of subcarriers for an OFDM signal.

e MeasFrames specifies the number of frames for measuring the Constellation.
ESG_Setting_Vars (Test_WMAN_ESG)

« NumberOfSubFrames specifies the number of frames measured.

« SubFrameTime specifies the signal frame time.
« Stop specifies the signal stop time to be sent to the ESG.

53



Advanced Design System 2011.01 - Numeric Components

References

1. Draft IEEE Standard for Metropolitan Area Networks IEEE P802.16-REVd/D2-2003,
Dec, 2003.



Advanced Design System 2011.01 - Numeric Components

Numeric Advanced Comm Components

AddGuard (numeric)
ConvolutionalCoder (numeric)
CRC Coder (numeric)

CRC Decoder (numeric)
Deinterleaver802D (numeric)
Demapper (numeric)
Interleaver802 (numeric)
LoadIFFTBuff802 (numeric)
Mapper (numeric)
MuxOFDMSym802 (numeric)
RMSE (numeric)
ViterbiDecoder (numeric)

Numeric Advanced Communications components provide functions for simulation of
advanced communication systems based on the latest communication technologies
including wireless metropolitan access networks (WMAN), wireless local access networks
(WLAN), and wireless personal access networks (WPAN).

The MuxOFDMSym802, LoadIFFTBuff802, and AddGuard components provide orthogonal
frequency division multiplexing (OFDM) modulation. These components can be used for
OFDM modulation based on IEEE.802.11a/g, IEEE 802.153a, and IEEE 802.16d standards.

The Mapper and Demapper components provide basic modulation/demodulation and
mapping/demapping types BPSK, QPSK, 8PSK, 16QAM, 64QAM, 128QAM, and 256QAM.

The ConvolutionalCoder and ViterbiDecoder components provide convolutional encoding
and decoding.

The CRC_Coder and CRC_Decoder components provide code error checking.

The Interleaver802 and Deinterleaver802 components provide interleaving/deinterleaving
functionality based on IEEE 802 standards.

The RMSE component provides EVM calculations for designers who want to create subnet
measurements.

ADS examples (accessed from the ADS Main window: File > Open > Example > Com_Sys
> WMAN_802_16d_TX_wrk) demonstrate the use of these components for simulation as
well as WLAN and WMAN system testing. WMAN Example Designs (numeric) discusses
designs in this workspace.

55



Advanced Design System 2011.01 - Numeric Components

AddGuard
.2 OF Ok
i —p

Description: Guard insertion of OFDM symbol
Library: Numeric, Advanced Comm
Class: SDFAddGuard

Parameters

Name Description Default Unit Type Range
IFFTSize IFFT size 64 int [1, o0)
PreGuard |Pre-guard length 16 int [0:IFFTSize]
PostGuard |Post-guard length 0 int [0:IFFTSize]
Intersection |Guard intersection length |0 int [0:IFFTSize]
Pin Inputs

Pin Name |Description Signal Type

1 |In Transmitted signal after IFFT |complex

2 |Window Window function real

Pin Outputs

Pin Name Description Signal Type

3 |Out |OFDM output data complex

Notes/Equations

1. This component is used to add a guard interval to IFFT signals, which forms an OFDM
symbol. Pre- and post-guard intervals are implemented; all OFDM systems are
supported.

2. IFFTSize specifies the input IFFT signal length.

PreGuard specifies the pre-guard length; PostGuard specifies the post-guard length.
If PreGuard = 0, there is no pre-guard; if PostGuard = 0, there is no post-guard.
Intersection specifies the intersect length of two consecutive OFDM symbols. If
Intersection = 0, there is no intersect between symbols. To protect the IFFT signals,
Intersection cannot exceed PreGuard + PostGuard.

IEEE 802 series (802.11a, 802.11g, 802.15.3a, 802.16a, 802.16d) and DVB-T
standards do not include post-guard and intersection.

3. Each firing IFFTSize tokens are input from pin In.

PreGuard + IFFTSize + PostGuard tokens are input from pin Window.

PreGuard + IFFTSize + PostGuard-Intersection tokens are output.

Pin In is the IFFT signal input, pre-guard and post-guard are added accordingly,
which forms an OFDM symbol.

Pin Window is used to add a window function to the current OFDM symbol; length is
PreGuard + IFFTSize + PostGuard. Designers can specify the window values and

56



Advanced Design System 2011.01 - Numeric Components
input to this pin. The input of this pin can also be set as a constant value.
o If an intersect does not exist, the OFDM symbol multiplies the window, then
outputs at pin Out.
o If an intersect does exist, the OFDM symbol multiplies the window; results are
output after adding the intersecting parts of the previous OFDM symbol. Then

the intersecting parts of the OFDM symbol are stored as intersecting parts for
the next OFDM symbol.

4. An OFDM symbol is formed as described here.
Inverse-Fourier-transforming creates the IFFT signal; time duration is Tb. A copy of
the last time duration Tg of the useful symbol period is added before the IFFT signal
(this pre-guard is also called cyclic prefix). A copy of the last time duration Tc of the
useful symbol period is added after the IFFT signal (this post-guard is also called
cyclic postfix). The combined duration is referred to as symbol time Ts. OFDM Symbol
Time with Guard Interval illustrates this sequence.

OFDM Symbol Time with Guard Interval

IFFT Signal

Ta Th

T=

5. Intersection, PreGuard and PostGuard values form consecutive OFDM symbols.
e Case 1: Intersection > PreGuard, Intersection > PostGuard

Intersection > PreGuard, Intersection > PostGuard

| Intersection

IFFT Signal

First
OF LM Symbol

It rs e ction

IFFT Signal
IFFT Signal

| Output
For the IFFT signal of the second OFDM symbol, pre-guard, and post-guard are
added. Thus, the second OFDM symbol are formed and multiplied by window.
The points with Intersection length of the first and second OFDM symbols are
then summed and output first. The points of the second OFDM symbol with
length of PreGuard + IFFTSize + PostGuard-Intersection are then output. The
points with Intersection length of the second OFDM symbol are stored as
intersecting parts for the next OFDM symbol, as described next.
Let the inputbe {0, 1, 2, 3, 4,5} and {6, 7, 8,9, 10, 11}, window is 1,
IFFTSize = 6, PreGuard = 2, PostGuard = 2, Intersection = 3. With calculation
steps above, the output of the first and second OFDM symbol are {4, 5, 0, 1, 2,

3,4} and {15, 11, 7, 7, 8, 9, 10}, respectively. Case 1: Calculation for Output
illustrates the calculation.

57



Advanced Design System 2011.01 - Numeric Components
Case 1: Calculation for Output

4 5 01 2 3 45 0 1 -=——y> Fist OFDM Symbaol

MWMMETSa 101 6 M—— Second OFDM Symbol

4501234l

11 7T 78810

e Case 2: Intersection< PreGuard, Intersection< PostGuard

Intersection < PreGuard, Intersection < PostGuard

Inter-
section

Inter
section

First
OF DM Symbol

Irter
gaction

FFT Signal

Sacond

IFFT Signal
OFDM Symbo

IFFT Signal

| Dutput

his calculation is similar to Case 1. Let the input be {0, 1, 2, 3, 4, 5} and {6, 7,
8,9, 10, 11}, window is 1, IFFTSize = 6, PreGuard = 3, PostGuard = 3,
Intersection = 2. The output of the first and second OFDM symbols are {3, 4, 5,
0,12,3,4,5,0}and {10, 12, 11,6, 7,8, 9, 10, 11, 6}, respectively. Case 2:
Calculation for Output illustrates the calculation.

Case 2: Calculation for Output

24 501 23 45 0 1 #—FirstOFDPM Symbol

9 0ME7TE9 101G YT —Second OF DM Symbol

345012345¢
MWA2MM 789 10 MG

References

1. IEEE Standard 802.11a-1999, "Part 11: Wireless LAN Medium Access Control (MAC)
and Physical Layer (PHY) specifications: High-speed Physical Layer in the 5 GHz
Band," 1999.

2. ETSITS 101 475 v1.1.1, "Broadband Radio Access Networks (BRAN); HIPERLAN Type
2; Physical (PHY) layer," April, 2000.

3. ARIB-JAPAN, Terrestrial Integrated Services Digital Broadcasting (ISDB-T);
Specification of Channel Coding, Frame Structure and Modulation, Sept.1998.

4, ETSI, Digital Video Broadcasting (DVB); Framing structure, channel coding and
modulation for digital terrestrial television. EN300 744 v1.2.1, European
Telecommunication Standard, July 1999.

5. IEEE P802.15-03/268r1, "Multi-band OFDM Physical Layer Proposal for IEEE 802.15
Task Group 3a," September 2003.

6. IEEE P802.16-REVd/D2-2003, "Draft IEEE Standard for Local and metropolitan area

58



Advanced Design System 2011.01 - Numeric Components
networks Part 16: Air Interface for Fixed Broadband Wireless Access Systems," 2003.

59



Advanced Design System 2011.01 - Numeric Components

ConvolutionalCoder
1 Corrvolutions 2
Enaocder

Description: Convolutional coder
Library: Numeric, Advanced Comm
Class: SDFConvolutionalCoder
Derived From: ConvolutionalCodeBase

Parameters
Name Description Default
CodingRate Coding rate: rate_1_2, rate_1_2
rate_1_3, rate_1_4, rate_1_5,
rate_1_6, rate_1_7, rate_1_8
ConstraintLength |Constraint length 7
Polynomial Generator polynomial {0133,
0171}
ZeroTail Zero tail used to convert NO
convolutional code to block
code: NO, YES
BitSequencelLength |Length of bit squence not 88
including tail bits, valid when
ZeroTail=YES
Pin Inputs

Pin Name Description Signal Type
1 |In input int
Pin Outputs

Pin Name Description Signal Type
2 |Out output int

Notes/Equations

Symbol Unit Type

enum

int
int
array
enum

int

Range

[3, 14]

{2~(K-1)+2*n-1},
n=1,2,3,...2~(K-2).

[1,65535]

1. This component is used to convolute the input information sequence bit-by-bit.

Each firing, 1/CodingRate Out tokens are produced when one In token is consumed.

A convolutional code is generated by passing the information sequence to be
transmitted through a linear finite-state shift register. The shift register generally
consists of K(k-bit) stages and n linear algebraic function generators. Input data to

the encoder (assumed to be binary) is shifted into (and along) the shift register k bits

at a time. The number of output bits for each k-bit input sequence is n bits.
Therefore, the code rate is defined as R . = k /n, which is consistent with the code

rate definition for a block code. The K parameter is called the constraint length of the

convolutional code.

60



Advanced Design System 2011.01 - Numeric Components
2. CodingRate (R ) is the ratio of input bit (k) and output bits (n). ConvolutionalCoder

supports the 1/n coding rate only, which implements an R . = 1/n rate(n = 2, 3, 4, 5,

6, 7, 8) convolution for input data.

Convolutional codes with k /n (k > 1) are not supported by this component because:
coding and decoding will be more complex; and, even convolutional codes with a kK /n
(k > 1) coding rate are used that are typically implemented by puncturing the
convolutional code with a 1/n coding rate.

ConstraintLength (K) represents shift register stages.

Polynomial is the generator function of the convolutional code. In general, the
generator matrix for a convolutional code is semi-infinite since the input sequence is
semi-infinite. As an alternative to specifying the generator matrix, a functionally
equivalent representation is used in which a set of n vectors is specified, one vector
for each n modulo-2 adder. A 1 in the ith position of the vector indicates that the
corresponding stage in the shift register is connected to the modulo-2 adder; 0 in a
given position indicates that no connection exists between that stage and the
modulo-2 adder.

For example, consider the binary convolutional encoder with constraint length K = 7, k
= 1, and n = 2; refer to Convolutional Code CC(2, 1 ,7). The connection for y0 is (1,
1,0,1,1,0, 1) from Input to Outputs; the connection forylis(1,0,1,1, 1,1, 1).
The generators for this code are more conveniently given in octal form as (0155,
0137). So, when k = 1, n generators, each of dimension K specify the encoder.

W

Convolutional Code CC(2, 1,7)

lmm—-—ﬂ?—-—{?—-—@ :@—ﬂn
— e e —t s
T S, S S o

5. ZeroTail specifies the character of encoder input sequence. If ZeroTail = YES, the
input sequence of encoder is divided into blocks. The length of the block is
BitSequencelLength. After each block, K — 1 zeros need to be appended as tail bits.
That is, the total block length of encoder is (BitSequenceLength + K — 1), referring to
Tail bits appending for ZeroTail = YES. The information will be used in the decoder to
obtain better performance.

Tail bits appending for ZeroTail = YES

A o pdusioriall

¢y CHOF »- . Enacdar L
Chop CorsolutionalCoder
ExlraTallFSDU [
n=eag=gitsaquenceLangth ComngRate=rate 1/2
nWrite=BitSequenceLength+Constraintbencth- 1 ConstraintLength=ConstraintLength
Offset=0 Paolyromial={0133. 0171}
Usekastinputs=vES ZeroTal=YES

BitSequencelength=BitSequencelength

6. BitSequencelLength (valid only if ZeroTail = YES) is used to specify the information
bit length, which indicates the length of uncoded bits. This parameter can be used to

61



Advanced Design System 2011.01 - Numeric Components
set the same value for the encoder and the decoder.

References

1. John G. Proakis, Digital Communications (Third edition), Publishing House of
Electronics Industry, Beijing, 1998.

62



Advanced Design System 2011.01 - Numeric Components

CRC_Coder
1 CRC 2
Encoder

Description: CRC generator
Library: Numeric, Advanced Comm
Class: SDFCRC_Coder

Derived From: CRC_Base

Parameters

Name Description Default Unit Type Range
ParityPosition Parity bits position: Tail, Head Tail enum
ReverseData reverse the data sequence or not: NO, YES |NO enum
ReverseParity reverse the parity bits or not: NO, YES NO enum
ComplementParity complement parity bits or not: NO, YES NO enum
MessagelLength input message length 172 int [1, inf)
InitialState initial state of encoder 0x0 int [0, inf)
Polynomial generator polynomial 0x1f13 int [3, inf)
Pin Inputs

Pin [Name Description Signal Type
1 |In input data int
Pin Outputs

Pin [Name |Description Signal Type
2 |Out output data |int

Notes/Equations

1. This component is used to add CRC bits to the input information.
Each firing, (MessagelLength + CRCLength) tokens are produced when
Messagelength tokens are consumed. CRCLength is the length of CRC bits that is

determined by Polynomial, where 2 CRCLength < polynomial < 2 CRCLength+1

2. CRC bits can be added to the head or the tail of the information bits by setting
ParityPosition. The order of CRC bits and the order of information bits can be
reversed by setting ReverseData and ReverseParity.

3. CRC Bit Calculation is an example of a CRC encoder in CDMA2000, where g(x) = x ©

+ X 2+ x 4+ 1, and Polynomial is hex 0x47. The CRC bits are added after the
information bits; the order of the CRC and information bits are not reversed.
« Initially, all shift register elements are set to the InitialState and the switches
are set in the up position.
e The register is clocked the nhumber of times equal to MessagelLength.

¢ Switches are then set in the down position so that the output is a modulo-2
63




Advanced Design System 2011.01 - Numeric Components

addition with a 0 and the successive shift register inputs are 0.
e The register is clocked an additional number of times equal to CRCLength and

the CRC bits are output.

CRC Bit Calculation

[Fiput —
o —:-_—:\;'—

0 w1 e P ) W5 . ¥
D ol e
F ] F ] E ¥
~ - ~ o

Up for first22 bike

18 t=n Ek t
U E: Ekme Crovun for lastG bits

H:‘J Modn -2 Sddition

References
1. TIA/EIA/1S-2000.2 (PN-4428), Physical Layer Standard for cdma2000 Spread
Spectrum Systems, July 1999.



Advanced Design System 2011.01 - Numeric Components

CRC_Decoder

1 CRT
Decaoder

Description: CRC Decoder
Library: Numeric, Advanced Comm
Class: SDFCRC_Decoder

Derived From: CRC_Base

Parameters

Name Description Default Unit Type Range
ParityPosition Parity bits position: Tail, Head Tail enum
ReverseData reverse the data sequence or not: NO, YES |NO enum
ReverseParity reverse the parity bits or not: NO, YES NO enum
ComplementParity ,complement parity bits or not: NO, YES NO enum
MessagelLength input message length 172 int [1, inf)
InitialState initial state of encoder 0x0 int [0, inf)
Polynomial generator polynomial 0x1f13 int [3, inf)
Pin Inputs

Pin [Name |Description Signal Type
1 |In input data  |int
Pin Outputs

Pin [Name |Description Signal Type
2 |Out output data |int
3 |Parity |Parity check |int

Notes/Equations

1. This component is used to check the CRC bits for CRC frame errors.
Each firing, (MessagelLength + CRCLength) tokens are consumed when
MessagelLength tokens and one parity token are produced. CRCLength is the CRC bit
length determined by Polynomial, where 2CRCLength < Polynomial < 2CRCLength+1.
2. The message part of the input data is sent to a CRC encoder that has the same
Polynomial value as the encoder (CRC_Coder). The CRC bits are then compared with
the CRC bits in the input data. If these are the same, the CRC check is passed.

65



Advanced Design System 2011.01 - Numeric Components

Deinterleaver802D

Deinthvd02

gl imd

OorT»

Description: Deinterleave the input data
Library: Numeric, Advanced Comm
Class: SDFDeinterleaver802

Parameters

Name Description Default Type Range

s modular factor of interleaving 1 int [1, o)

I divisor factor of interleaving 16 int [1, )

NCBPS |[Number of coded bits per OFDM 48 int [1, o)
symbol

Tt The configuration of parameters s,| and NCBPS should be considered carefully or
unexpected result will occur.

Pin Inputs

Pin [Name |Description Signal Type
1 |In Input real
Pin Outputs

Pin [Name |Description Signal Type
2 |Out Output real

Notes/Equations

1. Deinterleaver802 performs deinterleaving based on IEEE 802 standards. This
component deinterleaves (the inverse of Interleaver802) input bits with a block size
corresponding to the number of bits in a single OFDM symbol N ~zpc.

Each firing, N ~gps tokens are consumed and N 5,5 tokens are produced.

2. Deinterleaving is defined by a two-step permutation; j is used to denote the index of
the original received bit before the first permutation; i is used to denote the index
after the first (and before the second) permutation; k is used to denote the index
after the second permutation, before delivering the coded bits to the convolutional
(Viterbi) decoder.

The first permutation is defined by
i = s x floor(j/s) + (j + floor(/ x j/ N ~gpg )) modsj=0,1,... N gps-1

The function floor (.) denotes the largest integer not exceeding the parameter
The second permutation is defined by

66



Advanced Design System 2011.01 - Numeric Components
k=1 xi-(N cgps- 1)floor(/ x i/N ~gps) i=0,1, ... N gpg - 1

In the equations, s is the modular factor and | is the divisor factor; these are variable
parameters and their values depend on which standard the model is used for.

If this model is used for IEEE 802.11 and HIPERLAN/2

s = max (N gpg/2, 1), I = 16

where
N gpsc @and N ~gps are determined by data rates given in IEEE 802.11 and

HIPERLAN/2 Rate Dependent Values.
If this model is used for IEEE 802.16
s=Ngpsc/2,1) 1 =12

where N gps- and N gpg are determined by block sizes given in IEEE 802.16 Bit
Interleaver Block Sizes (NCBPS / NBPSCQC).

IEEE 802.11 and HIPERLAN/2 Rate Dependent Values

Data Rate Modulation Coding Coded Bits per Coded Bits per Data Bits per OFDM

(Mbps) Rate (R) Subcarrier OFDM Symbol Symbol (NDBPS)
(NBPSC) (NCBPS)

6 BPSK 1/2 1 48 24

9 BPSK 3/4 1 48 36

12 QPSK 1/2 2 96 48

18 QPSK 3/4 2 96 72

24 (IEEE 16QAM 1/2 4 192 96

802.11a)

27 16QAM 9/16 4 192 108

(HIPERLAN/2)

36 16QAM 3/4 4 192 144

48 (IEEE 64QAM 2/3 6 288 192

802.11a)

54 64QAM 3/4 6 288 216

IEEE 802.16 Bit Interleaver Block Sizes (N cgpg / N gpsc)

Modulation |16 Subchannels (Default) 8 Subchannels 4 Subchannels |2 Subchannels |1 Subchannel

QPSK 384/2 192/2 96/2 48/2 24/2
16QAM 768/4 384/4 192/4 96/4 48/4
64QAM 1152/6 576/6 288/6 144/6 72/6
References

1. IEEE Standard 802.11a-1999, "Part 11: Wireless LAN Medium Access Control (MAC)

and Physical Layer (PHY) specifications: High-speed Physical Layer in the 5 GHz
Band," 1999.

2. ETSITS 101 475 v1.1.1, "Broadband Radio Access Networks (BRAN); HIPERLAN Type

67



Advanced Design System 2011.01 - Numeric Components
2; Physical (PHY) layer," April, 2000.
3. IEEE P802.16-REVd/D2-2003," Part 16 Air Interface for Fixed Broadcast Wireless
Access Systems".

68



Advanced Design System 2011.01 - Numeric Components

Demapper

Demapper

Description: Demodulator for BPSK, QPSK, 8PSK, 16QAM, 32QAM, 64QAM, 128QAM, and
256QAM or demapping according to user defined table.

Library: Numeric, Advanced Comm

Class: SDFDemapper

Parameters

Name Description Default Unit Type Range

ModType Modulation type: BPSK, QPSK, PSK8, QAM16, QAM32, QPSK enum

QAM64, QAM128, QAM256, User_Defined

MappingTable |Constellation table complex
array

Pin Inputs

Pin [Name |Description Signal Type

1 |In input symbol sequence ,complex

Pin Outputs

Pin [Name |Description Signal Type

2 |Out |output bit sequence |int

Notes/Equations

1. This component is used for BPSK, QPSK, 8PSK, 16QAM, 32QAM, 64QAM, 128QAM
and 256QAM symbol demodulation or for demapping bits according to the mapping
table.

2. The input signhal is assumed to be modulated using the Mapper component. For QAM
modulations, the input signal amplitude must be normalized before input to the
model according to the constellations.

Each firing, when one In token is consumed:
e 1 Out token is produced for BPSK
e 2 Out tokens are produced for QPSK

3 Out tokens are produced for 8PSK

4 Out tokens are produced for 16QAM

5 Out tokens are produced for 32QAM

6 Out tokens are produced for 64QAM

7 Out tokens are produced for 128QAM

8 Out tokens are produced for 256QAM

For the user-defined mapping table, assuming the size of the array is A, log2(A)

Out tokens are produced when one In token is consumed.

For BPSK, bit 0 is mapped to 1 and bit 1 is mapped to —1.
69



W

Advanced Design System 2011.01 - Numeric Components

The QPSK constellation is illustrated in QPSK Modulation Constellation. The 8PSK
constellation is illustrated in 8PSK Modulation Constellation.

QPSK Modulation Constellation

[w]

C hanmnel

4
I I N
M 412 @

, )
o 14z
— bt | Chamel
1

1

'l'l ’I
N #

11 li“ - —U'ﬁ” 10

8PSK Modulation Constellation

2 Chams
A C=oos{ TE)
(R - _ 0 S==in)
o 1c-a e
2 Y. =2SE
o0 g 1s & 00
LS s o)
.'I | | | o | Chamel
1
1
. 1
1
F 4+ = [ ]
Mo L 100
. L
. T
111 T m

. For 16QAM, 32QAM, 64QAM, 128QAM and 256QAM, the constellation points in

quadrant 1 are converted to quadrants 2, 3 and 4 by changing the two most
significant bits (Ik and Qk) and by rotating the g least significant bits according to
Conversion of Constellation Points.

Constellation diagrams are illustrated in 16 and 32QAM Constellations through
256QAM Constellation.

. For user-defined mapping, the input binary bit sequence is mapped to a constellation

point with the corresponding decimal index specified in the MappingTable parameter.

Conversion of Constellation Points

Quadrant Most Significant Bit |Least Significant Bit Rotation

1

2
3
4

00

10 n/2
11 n

01 3n/2

70



Advanced Design System 2011.01 - Numeric Components

16 and 32QAM Constellations

2
[} 10141 40014 | 00440 Q0040
Ip @y = 18 Ip @2y, =00 k=10 = 2 =2 9 K2, =00
1041 1001 | 0040 0011 10040 10401 40001 Q0100 20404 ad111
o o o a o o o o a [
1040 1000 | Qo0a Qo0 10910 10100 10000 | 00000 Qoooq 00014
o o m] o [w] o o a o =)
1101 1100 | 0100 0110 041 11001 11000 01000 04100 01410 |
o o o o o o o o o o
M1 1110 o101 0111 1111 41109 11100 [ 01004 04104 01040
o o o o o o o o o o
I3y = 11 2y =01
11040 44440 | 01011 01111
Kx=1 o o | o o Q=0
16-0 Ahd
32 AN
64QAM Constellation
]
101100 101110 100110 100100 001000 004001 OO1101 00110
o o o a a o o a
I3, =10 1,3, =00
101101 101111 100411 100401 |00M0M0 004041 0O4141 004110
o o o a o o o o

101001 101011 100011 100001 |OOOOM0 OOOO41 000411 000410
o o o a o o k= a

101000 101010 10010 100000 |ODOO0 OOOOO1 0OOO0101 DOO100
o o o a o o a o

110100 110101 110001 110000 (010000 OHOOM0D 011010 011000

=} o =} o o o o L=
Iy =11 Iy =01
110110 110111 110011 110010 (010001 010041 011011 011001
=) o =) o o o a o
111110 111111 111011 111010 (010101 010111 o1 oidm
[w] o =) o o o a o

111100 111101 111001 111000 |O040100 010110 011110 011100
o o [w) o o o a o

Ik Qg arethe o MSB= in each quadrant

128QAM Constellation

71



Advanced Design System 2011.01 - Numeric Components

11010 11011 0011 040M0
N4 & o o o 2y = 00
100 1100 0100 04000
a4 o o =] o
0mO0 1M0i 100 1000 #1014
[ o a o oo
I3y = 10 0010 1@H 1M1 1090 #1100 1
54 O o a fal o a
w2 rotation moi0 0mH 0041 0010 01190 01
4 o o a & o a
D0 00 00101 O0i00 01100 01101
14 o o o o o a
-
T T T T ; — -
1 3 5 7 9 11
2y = 11 Iy 2 = 01
7 rotation I3w2 rotation

256QAM Constellation

i IKDK=DD
pooo  oopt 1ol oiod' 000 o0t 00Ol 0000
15 -] o o o ol o o o o
|
oot oot o |ZI11IJI oo o111 o011t ooio
13- o o o o | o o o o
o1 101 1 mop 1o 1 o011 1010
11 - o o o 2, 0 o o o
I_1III 11
opoeo 1001 1101 100 | 100 1o 001 1000
I, Gy =10 - o o o o 0 o 0 o
w2 rotation - oo 10 v 100! oo 1101 1001 1000
- o o o ol o o o o
|
oo 1o 1 111|JI 1o 111 101 1010
6 o o o o | o o =] o
go1o oot oM III11D| oo o1 oo oo
3 o o o o o o [=] o
—"ho Il ——oi
[oopooo ooot 0101 0100 [O0Op100 0101 0001 0000
14 o o o o o o o o
1 3 g 7 81 115
kO =11 Iy 2y =01
= rotation a2 rotation
References

1. EN 300 429, "Digital Video Broadcasting (DVB); Framing structure, channel coding
and modulation for cable systems," V1.2.1, 1998-04.

72



Advanced Design System 2011.01 - Numeric Components

Interleaver802

Inthea 0z
1 I 2

Description: Interleave the input bits
Library: Numeric, Advanced Comm
Class: SDFInterleaver802

Parameters

Name |Description Default Type Range

s modular factor of interleaving 1 int [1, o)

I divisor factor of interleaving 16 int [1, o)

NCBPS |Number of coded bits per OFDM 48 int [1, o)
symbol

Tt The configuration of parameters s,| and NCBPS should be considered carefully or
unexpected result will occur.

Pin Inputs

Pin [Name |Description Signal Type
1 |In Input int
Pin Outputs

Pin [Name |Description Signal Type
2 |Out Output int

Notes/Equations

1. Interleaver802 performs interleaving based on IEEE 802 standards. Encoded data
bits are interleaved by this block interleaver with a block size corresponding to the
number of bits in a single OFDM symbol N ~5pc.

Each firing, N ~gps tokens are consumed and N 5,5 tokens are produced.

2. Interleaving is defined by a two-step permutation. The first permutation ensures that
adjacent coded bits are mapped onto nonadjacent subcarriers. The second
permutation ensures that adjacent coded bits are mapped alternately onto less and
more significant bits of the constellation, thereby avoiding long runs of low reliability
bits.

In the following, k denotes the index of the coded bit before the first permutation; i
denotes the index after the first and before the second permutation; j denotes the
index after the second permutation, just prior to modulation mapping.

The first permutation is defined by

73



Advanced Design System 2011.01 - Numeric Components
i = (N cgps /1) (k mod 1) + floor(k/l) k =0, 1, ..., N gps - 1

The function floor (.) denotes the largest integer not exceeding the parameter.
The second permutation is defined by
j =s x floor(i/s) + (i + N gpg - floor(l X i/N ~gps)) modsi=0,1,... N gps-1

In the equations, s is the modular factor and | is the divisor factor ; these are
variable parameters and their values depend on which standard the model is used
for.

If this model is used in IEEE 802.11 and HIPERLAN/2,

s = max (N BPSC /2,1), | =16;

where N gpg- and N gpg are determined by data rates given in IEEE 802.11 and

HIPERLAN/2 Rate-Dependent Values.
If this model is used in IEEE 802.16,
s=Ngpsc /2,1 =12;

where N gps-and N ~gpg are determined by block sizes given in IEEE 802.16 Bit
Interleaver Block Sizes (NCBPS /NBPSC).

IEEE 802.11 and HIPERLAN/2 Rate-Dependent Values

Data Rate Modulation Coding Coded Bits per Coded Bits per Data Bits per OFDM

(Mbps) Rate (R) |Subcarrier OFDM Symbol Symbol (NDBPS)
(NBPSC) (NCBPS)

6 BPSK 1/2 1 48 24

9 BPSK 3/4 1 48 36

12 QPSK 1/2 2 96 48

18 QPSK 3/4 2 96 72

24 (IEEE 16QAM 1/2 4 192 96

802.11a)

27 16QAM 9/16 4 192 108

(HIPERLAN/2)

36 16QAM 3/4 4 192 144

48 (IEEE 64QAM 2/3 6 288 192

802.11a)

54 64QAM 3/4 6 288 216

IEEE 802.16 Bit Interleaver Block Sizes (N cgpg /N gpsc)

Modulation |16 Subchannels (Default) 8 Subchannels 4 Subchannels |2 Subchannels |1 Subchannel

QPSK 384/2 192/2 96/2 48/2 24/2
16QAM 768/4 384/4 192/4 96/4 48/4
64QAM 1152/6 576/6 288/6 144/6 72/6
References

74



1.

Advanced Design System 2011.01 - Numeric Components
IEEE Standard 802.11a-1999, Part 11: Wireless LAN Medium Access Control (MAC)
and Physical Layer (PHY) specifications: High-speed Physical Layer in the 5 GHz
Band, 1999.
ETSI TS 101 475 v1.1.1, Broadband Radio Access Networks (BRAN); HIPERLAN Type
2; Physical (PHY) layer, April, 2000.
IEEE P802.16-REVd/D2-2003, Part 16 Air Interface for Fixed Broadcast Wireless
Access Systems.

75



Advanced Design System 2011.01 - Numeric Components

LoadIFFTBuff802

CF Db

-

Description: Subcarriers loader into IFFT buffer
Library: Numeric, Advanced Comm
Class: SDFLoadIFFTBuff802

Parameters
Name Description Default
Carriers Number of subcarriers per OFDM 52

symbol
DCCarrier DC carrier: OFF, ON OFF
DCPilotValue |DC Pilot Value 1.333333+j*0.0
FullSubcarriers Active all sub-carriers: NO, YES YES
SubcarrierList |Sub-carrier list {-21,-7,7, 21}
Order IFFT points in 2~Order 7
Pin Inputs
Pin [Name |Description Signal Type
1 |In Transmitted signal before IFFT |complex
Pin Outputs
Pin [Name |Description Signal Type

2 |Out IFFT input signal, zero padded |complex

Notes/Equations

Unit Type Range

int [1:8192]

enum
complex
enum
int

array

int [(logCarriers/log2),
)

1. This component is used to load transmission data into the IFFT buffer. Each firing,

Carriers tokens are consumed and 2 ©rder tokens are generated. For example, if
Carriers = 52, Order = 7, 52 tokens are consumed and 128 tokens are generated.

2. Data loading is performed as follows.

Assume x(0), x(1), ... , x(N—1) are the inputs that generally represent active
subcarriers defined by designers, where N = Carriers. y(0), y(1), ... , y(M—1) are the

outputs, M = 2 Order,
when N is even

: N .0 : N
y(i) = x[5+z— IJ i=1, s

76



Advanced Design System 2011.01 - Numeric Components

y(i) = 0 izo, N1, . m-N_y
2 2
y(i) = x[s—M+ EJ i :M—E,...,M—l
when N is odd
) N-1 . ) N+1
y(L) = x[ +L—1J i=1, ..., 5
y(i) = 0 iz Nt o N

y(i) = x['—M—ﬂ%J i:M—f%,...,M—l

For example, if Order = 4 and Carriers = 7, the input carriers are x(0), x(1), x(2),
x(3),x(4),x(5),x(6), and the output carrier sequence would be:

0, x(3), x(4),x(5),x%x(6),0,0,0,0,0,0,0,0,x(0),x(1),x(2)

which will be loaded into the IFFT model for the IFFT transformation.

. DCCarrier and DCPilotValue specify whether DC carrier is used; if DCCarrier = ON,
the DC carrier value is set by DCPilotValue.

In the example provided in note 2, DCCarrier = OFF.

While DCCarrier = ON and DCPilotValue = 4/3, the output carriers sequence would
be:

4/3, x(3), x(4), x(5), x(6), 0,0, 0, 0, 0, O, O, O, x(0), x(1), x(2)

in which the first carrier is 4/3 instead of 0.

. If FullSubcarriers = YES, all input carriers will be used. If FullSubcarriers = NO, some
of the input carriers will be used; SubcarrierList specifies which input carriers will be
used.

. SubcarrierList (valid when FullSubcarriers = NO) specifies the positions of the input
carriers to be used as active subcarriers (all subcarriers are 0 except those carriers
specified).

Assume x(0), x(1), ... , x(N—1) are the input signals that generally represent active
subcarriers defined by designers, where N = Carriers. y(0), y(1), ... , y(M—1) are the

output of the model M = 2 Order, The corresponding indices of x(0), x(1), ... , x(N—1)
are {int(—Carriers/2), int(—Carriers/2) + 1, ..., =1, 1, ..., int(Carriers/2)—1,
int(Carriers/2)}.

The active subcarrier loading procedure is performed as follows: assume index is an
element of {int(—Carriers/2), int(—Carriers/2) + 1, ..., -1, 1, ..., int(Carriers/2)—-1,
int(Carriers/2)}:

when N is even

y(index) = x[§+index— j index>0
y(M +index) = x[index+%rj index <0

when N is odd

y(index) = x[Nz_ I +index — l] index >0
1

b

N-
2

y(M +index) = x[indeer index <0

77



Advanced Design System 2011.01 - Numeric Components
For example, SubcarrierList = {—2, —1, 2, 3}, and input carriers are x(0), x(1), x(2),
x(3), x(4), x(5), x(6). Indices of the input carriers are -3, -2, -1, 1, 2, 3, 4.
Elements in SubcarrierList must be integer and in (—Carriers/2, Carriers/2), in which
Carriers is the number of carriers of input, here, it is 7 and index should be in [-3,
3]. In this case, the carrier with index is =2, —1, 2, 3 is used, these are x(1), x(2),
x(4), x(5). The output subcarriers are then:
4/3, 0, x(4), x(5), 0,0,0,0,0,0,0,0,0, 0, x(1), x(2).

References
1. IEEE Standard 802.11a-1999, "Part 11: Wireless LAN Medium Access Control (MAC)
and Physical Layer (PHY) specifications: High-speed Physical Layer in the 5 GHz
Band," 1999.
2. ETSITS 101 475 v1.1.1, "Broadband Radio Access Networks (BRAN); HIPERLAN Type
2; Physical (PHY) layer," April, 2000.
3. ARIB-JAPAN, Terrestrial Integrated Services Digital Broadcasting (ISDB-T);

Specification of Channel Coding, Frame Structure and Modulation, Sept.1998.

ETSI, Digital Video Broadcasting (DVB); Framing structure, channel coding and
modulation for digital terrestrial television. EN300 744 v1.2.1, European
Telecommunication Standard, July 1999.

IEEE P802.15-03/268r1, "Multi-band OFDM Physical Layer Proposal for IEEE 802.15
Task Group 3a," September 2003.

IEEE P802.16-REVd/D2-2003, "Draft IEEE Standard for Local and metropolitan area
networks Part 16: Air Interface for Fixed Broadband Wireless Access Systems," 2003.

78



Advanced Design System 2011.01 - Numeric Components

Mapper

.2

Mapper

Description: Modulator for BPSK, QPSK, 8PSK, 16QAM, 32QAM, 64QAM, 128QAM, and
256QAM or mapping according to user defined table.

Library: Numeric, Advanced Comm

Class: SDFMapper

Parameters

Name Description Default Unit Type Range

ModType Modulation type: BPSK, QPSK, PSK8, QAM16, QAM32, QPSK enum

QAM64, QAM128, QAM256, User_Defined

MappingTable |Constellation table complex
array

Pin Inputs

Pin |[Name |Description Signal Type

1 |In input bit sequence |int

Pin Outputs

Pin |[Name |Description Signal Type

2 |Out output symbol sequence |complex

Notes/Equations

1.

2.

The Mapper is a generic element performing a Mapping/Modulation for an input bit
sequence. When ModType is specified to BPSK, QPSK, 8-PSK, 16-QAM, 32-QAM, 64-
QAM, 128-QAM or 256-QAM, the input bit sequence will be mapped/modulated to
BPSK, QPSK, 8-PSK, 16-QAM, 32-QAM, 64-QAM, 128-QAM or 256-QAM symbols as
described in the section 9 of [1], in which Constellations have been defined in figure
7-8 of [1]. For each Mapped/Modulated symbols, two most significant bits (MSB) are
deferential encoded and least significant bits are rotated based on the specification in
Conversion of Constellation Points. In this case, the Mapper just gives the exact same
Mapping/Modulation as what shown in Figure 7-8 of [1]. When ModType is specified
to User_Defined, users can customize the Constellation by putting their own symbols
in the MappingTable.
This component is used to generate BPSK, QPSK, 8PSK, 16QAM, 32QAM, 64QAM,
128QAM and 256QAM modulation symbols or bit mapping according to the mapping
table.
Each firing, one Out token is produced when:

e 1 In token is consumed for BPSK

e 2 In tokens are consumed for QPSK

« 3 In tokens are consumed for 8PSK

e 4 In tokens are consumed for 16QAM
79




Advanced Design System 2011.01 - Numeric Components

5 In tokens are consumed for 32QAM

6 In tokens are consumed for 64QAM

7 In tokens are consumed for 128QAM

8 In tokens are consumed for 256QAM

For user-defined mapping table, assuming the size of the array is A, one Out
token is produced when log2(A) In tokens are consumed. For more than one
input token the input sequence is LSB first and MSB last.

For BPSK, bit 0 is mapped to 1; bit 1 is mapped to —1.

For QPSK, the constellation diagram is illustrated in QPSK Constellation.

For 8PSK, the constellation diagram is given in 8PSK Constellation.

For 16QAM, 32QAM, 64QAM, 128QAM and 256QAM, the constellation points in
quadrant 1 are converted to quadrants 2, 3 and 4 by changing the two most
significant bits (Ik and Qk) and by rotating the g least significant bits according to
Conversion of Constellation Points.

ounsw

Conversion of Constellation Points

Quadrant Most Significant Bit |Least Significant Bit Rotation

1 00

2 10 n/2
3 11 n

4 01 3n/2

16QAM, 32QAM, 64QAM, 128QAM and 256QAM constellation diagrams are illustrated
in 16 and 32QAM Constellation through 256QAM Constellation.

7. For user-defined mapping, the input binary bit sequence is mapped to a constellation
point with corresponding decimal index in the MappingTable.

QPSK Constellation

0 C hannel

F
P e S R
S | +1Z @

. )
) 1z
— L e I Chamme
1

1

'l\ ’I
N ]

TR T2 m

8PSK Constellation

80



Advanced Design System 2011.01 - Numeric Components

2 Channel
4 I =oos{TE)
A1 I L] S==i IS
A S N MU
S .. S2%1T
’
010 A5 & 0o
e s ch
] I 1y g
T 1 1 - | Chanrel
’
i
J
a +5 4
"o - 100
~. 2
& s -
111 e R 11|

16 and 32QAM Constellation

]
W} 10411 100411 | 00410 00010
2y = 10 Iy 2y = 00 KQ,=10 © o o 2 D=0
1041 1001 | 0010 00141 10010 10101 10004) 00100 00104 0114
o o o o [a} o a o o o
1040 1000 Q000 0004 10110 10100 10000] 00000 00009 Qo014
o o o o o o o o o o
104 4100 | 0400 0110 11041 11009 1000 | 31000 94100 0141190 |
o a o o o o a o o o
1111 110 | o101 0111 11111 111091 11100 | 01001 01101 01010
o o o o o a o a a o
3, = 11 I, 2, =01
MO0 M 1oo1011 01111
Q=M o o o o &y =01
16- AR
32-0AM
64QAM Constellation
v}
101100 101110 100110 100100 | DOODD DOAD01 DO4101 001900
o o o o o o o o
Iy @y =10 | 2y =00
01101 101111 100411 100104 | poioio D001 poi111  OO1490
o o o o o o o o
101001 101011 100011 100004 | DDDO10 DODDW1 DOO111 000410
o o o o o o o o
101000 101010 10010 100000 (DDDDOD DODDDY DDO101 DO0400
o =} o o o ] o o
110100 110101 110001 110000 | 010000 010090 011010 011000 |
o a o o a] 0 o a]
Iy Gy =11 b &y =01
110110 110111 110011 110010 | 010001 00011 01011 011001
o a o o u] o o o
111110 111111 110 1100 | 00101 010 O oim
o a o o u] o o o
111100 111101 1414001 111000 | 010900 010490 011110 011400
o a fa [m] (=] o o o

Iy Dy are the two MS5Bs in each quadrant

81



Advanced Design System 2011.01 - Numeric Components

128QAM Constellation

11010 11011 01011 0100
N4 o a © o I3y = 00
im0 11001 01001 04000
a4 a =] o =]
000 1001 10101 10100 111 1110
T = [m} =] o [m} a
|ka =10 0010 1mi4 10141 1010 11110 1111
54 o =] - o o a
w2 rotation Mo omii 0011 0000 D0 g
4 o o o o o a
MO0 0O0m1 00101 00f00 Oii00 010
14 o =] o o o a
T T T T T I
1 3 5 T a 11
2y, = 11 Iy 2y, = 01
= rotation w2 rotation

256QAM Constellation

i Iy 3 =00
oo oot 010f o100 0100 0101 0001 0000
5] o o o ol o o o a
|
T T L S T T T (R R I (R VR i ]
13- o o o o , 0 o o a
o1 1 1 o me 1 w1 100
1 o o o o o o o a
—10 ' 11
Emﬂﬂ 101 11 I!DDIEWD 1o o0 1000
Lo =10 9 o o o o 0 o s a
kK
w2 rotation . | 1000 1001 1101 100’ w00 ner 1001 1000
7= o o o ol o o o o
|
1010 1011 110 110, 10 1111 011 1010
5= o o o ] o o o o
|
oo10 oo 01Ef 0n0p 010 D111 o011 D010
34 o o o o, 2 o o a
——0n o1
[MMpooo o001 010F 0100 @000 0101 0001 0000
1+ o o o = o o o a_
1 3 3 7 g 1 13 1
Qg =1 L Q=01
7 rotation FIn2 otation
References

1. EN 300 429, "Digital Video Broadcasting (DVB); Framing structure, channel coding
and modulation for cable systems," V1.2.1, 1998-04.

82



Advanced Design System 2011.01 - Numeric Components

MuxOFDMSym802
-2 OFDMLN ]
?_’. N

Description: generic OFDM symbol multiplexer
Library: Numeric, Advanced Comm
Class: SDFMuxOFDMSym802

Parameters
Name Description Default Unit Type Range
Carriers Number of subcarriers per OFDM 52 int [1:8192]
symbol
DataCarriers Number of data subcarriers per OFDM |48 int [1:8192]
symbol
PilotPosition Standard pilots positions {-21,-7,7, 21} int array
PilotValue Standard pilots values {1.0, 1.0, 1.0, - complex
1.0} array
GuardCarrierPosition |Guard carriers positions int array
GuardCarrierValue |Guard carriers values complex
array
Pin Inputs
Pin [Name |Description Signal Type

1 |Data |data subcarriers input complex
2 |Pilot |continual pilot value |complex
Pin Outputs

Pin [Name |Description Signal Type
3 |Out |OFDM symbol output complex

Notes/Equations

1. This component is used to multiplex data and pilot subcarriers into the OFDM symbol
for IEEE 802 standards 802.11a, 802.11g, 802.15.3a, 802.16a, and 802.16d.

© Note
OFDM symbols generally consist of continual pilots (CP) and scattered pilots (SP). Current IEEE 802
standards use CP only. Even though some DAB, DVB-T, and ISDB-T OFDM systems may use both CP
and SP, MuxOFDMSym802 supports CP only.

2. The basic OFDM symbol structure is introduced in the frequency domain. The symbol
(illustrated in OFDM Symbol) consists of subcarriers that determine the size of the
FFT. There are several subcarrier types:

o Data subcarriers for data transmission
 Pilot subcarriers for estimations

83



Advanced Design System 2011.01 - Numeric Components

e Null subcarriers for no transmission, for guard bands and DC subcarrier.
Guard bands in most OFDM systems (DVB-T, ISDB-T, 802.11a, 802.11g,
802.16a, and 802.16d) are inserted zeros.
IEEE 802.15.3a has additional guard carriers defined between data subcarriers
and guard bands. The guard subcarriers can be used for various purposes,
including relaxing the specification on transmit and receive filters. The
magnitude level of the guard tones is not specified, so reduced power levels for
these subcarriers can be used. The all-zeros guard bands allow the signal to
naturally decay and create the FFT brick wall shaping.

OFDM Symbol
Data Subcamiers OC Subcamier M
Channel -
“wGuard Band Guard Band /

This component multiplexes data and pilot subcarriers into one OFDM symbol
according to the positions of data and pilot subcarriers defined in the standards.
The null subcarriers (guard bands and DC subcarrier) are inserted into an OFDM
symbol by the LoadIFFTBuff802 component. (Both MuxOFDMSym802 and
LoadIFFTBuff802 components implement an OFDM symbol in the frequency
domain.)
3. MuxOFDMSym802 parameter settings enable designers to generate a variety of

OFDM symbol formats, in accordance with IEEE standards or not.

Carriers specifies the number of active subcarriers (data subcarriers, pilot subcarriers

and guard subcarriers) in one OFDM symbol.

D Note
Carriers = DataCarriers + PilotPosition + GuardCarrierPosition.

DataCarriers specifies the number of data subcarriers in one OFDM symbol.

PilotPosition specifies continual pilot positions; PilotPosition is the number of pilot

subcarriers in one OFDM symbol.

PilotValue specifies values for continual pilot positions.

GuardCarrierPosition specifies guard carriers positions (default = NULL);

GuardCarrierPosition is the number of guard carrier subcarriers in one OFDM symbol.

GuardCarrierValue specifies values for guard carrier positions (default = NULL).
4, Each firing, one Pilot token and DataCarriers tokens are consumed and Carriers

tokens are output.

The complex Data input signal is directly multiplexed into the OFDM symbol.

The continual pilots are multiplexed into OFDM symbols as follows:

p 4 is the input in Pilot pin for kth OFDM symbol (or kth firing)

a0al,..,a,aren+l1 pilot values defined by PilotValue
The actual pilot values of kth OFDM symbolarep , x a0O,p, x al,..,p,%xa,

. The continual pilot subcarrier values are multiplexed into the OFDM symbol

according to PilotPosition.

The guard carriers are multiplexed into the OFDM symbol like continual pilot as

follows:

b0,b1,..,b arem+1 guard carriers values specified by GuardCarrierValue.
84



Advanced Design System 2011.01 - Numeric Components
m

The actual guard carrier values of kth OFDM symbolarep , xb 0, p , x b1, ..., p,
Xb ..

These guard carrier subcarriers values are multiplexed into the OFDM symbol
according to GuardCarrierPosition.

The MuxOFDMSym802 output includes all active data, pilot, and guard carriers
subcarriers indexed in the frequency domain:

[—(Carriers )/2, —(Carriers )/2 + 1, ..., -1, 1, ..., (Carriers + 1)/2 -1, (Carriers +
1)/2]

LoadIFFTBuff802 loads these output signals from MuxOFDMSym802 into the IFFT
buffer and inserts zeros into the NULL and DC subcarriers. IFFT Input and Output
(802.11a Specification) illustrates the 802.11a IFFT input and output. An OFDM
symbol is input in the frequency domain after LoadIFFTBuff802; an OFDM symbol is
output in the time domain after IFFT.

IFFT Input and Output (802.11a Specification)

- _ | aq =
:j::}{ | _ Tome Domain Outputs
Null 37 37
#-26 35 3H
-2 62 62
-1 63 63
References
1. IEEE Standard 802.11a-1999, "Part 11: Wireless LAN Medium Access Control (MAC)

and Physical Layer (PHY) specifications: High-speed Physical Layer in the 5 GHz
Band," 1999.

. ETSI TS 101 475 v1.1.1, "Broadband Radio Access Networks (BRAN); HIPERLAN Type

2; Physical (PHY) layer," April, 2000.

ARIB-JAPAN, Terrestrial Integrated Services Digital Broadcasting (ISDB-T);
Specification of Channel Coding, Frame Structure and Modulation, Sept.1998.

ETSI, Digital Video Broadcasting (DVB); Framing structure, channel coding and
modulation for digital terrestrial television. EN300 744 v1.2.1, European
Telecommunication Standard, July 1999.

IEEE P802.15-03/268r1, "Multi-band OFDM Physical Layer Proposal for IEEE 802.15
Task Group 3a," September 2003.

IEEE P802.16-REVd/D2-2003, "Draft IEEE Standard for Local and metropolitan area

85



Advanced Design System 2011.01 - Numeric Components
networks Part 16: Air Interface for Fixed Broadband Wireless Access Systems," 2003.

86



Advanced Design System 2011.01 - Numeric Components

RMSE

f—b‘ RMSE
—P

Description: Root Mean Square Error
Library: Numeric, Advanced Comm
Class: SDFRMSE

Parameters

Name Description Default Unit Type |lRange
StartFrame Start frame 0 int [0, o)
FramesToAverage Number of frames for the average RMSE |1 int [1, o)
FrameLength Frame length 4096 int [1, o)
DisplayOption Display option: RMS, dB RMS enum

Pin Inputs

Pin [Name |Description Signal Type

1 |InRef |Input reference signal complex
2 |InTest |Input test signal complex

Notes/Equations

1. This component is used to calculate the root mean square error of the input data.
Each firing, one token is consumed; after (FramesToAverage +
StartFrame) x FramelLength tokens are consumed, the RMSE of the input signal is

sinked.
2. The root mean square error is calculated according to the equation
N; L;
1 1 .. -2 .. .2
RMSE = -P\_rf Z QZ((II(LJ) _IE(LJ” + (QI(LJ) - QE(LJ” )
i=1 /
where,

N (is the number of frames to average

L is the frame length

I1(,j),Q1(,j)andI?2 (i, j), Q2 (i, j) are the in-phase and quadrature parts,
respectively, of the input signals

87



Advanced Design System 2011.01 - Numeric Components

ViterbiDecoder
1 Yiterhi 2
—p Decoder

Description: Viterbi decoder for convolutional code

Library: Numeric, Advanced Comm
Class: SDFViterbiDecoder

Parameters
Name Description
CodingRate Coding rate: rate_1_2,

rate_1_3, rate_1_4, rate_1_5,
rate_1_6, rate_1_7, rate_1_8

ConstraintLength  |Constraint length

Polynomial Generator polynomial

ZeroTail Zero tail used to convert
convolutional code to block
code: NO, YES

BitSequencelLength [Length of bit squence not
including tail bits, valid when
ZeroTail=YES

MaxSurvivorLength Maximum length of survivor, in
bits

Polarity Mapping mode from NRZ to
logic signal: Negative to logic 1,
Negative to logic 0

InitialState Initial state of convolutional
encoder: Zero state, Non-zero
state

IgnoreNumber Number of data points to be
ignored

Pin Inputs

Pin [Name |Description Signal Type
1 In
Pin Outputs

input real

Pin [Name |Description Signal Type

2 |Out output int

Notes/Equations

Default Symbol Unit Type Range

rate_1_2 R enum

7 K int [3, 14]

{0133, int {2~ (K-1)+2*n-1}%,
0171} array n=1,2,3,...2"(K-2).
NO enum

88 N int [1,65535]

35 int [5*K, 20*K]
Negative to enum

logic 1

Zero state enum

0 int [0, 65535]

1. This component is used for convolutional code decoding with a Viterbi algorithm.
Generally, there are two ways to implement convolutional code in communications

88



Advanced Design System 2011.01 - Numeric Components

system: code a semi-infinite bit sequence length where the initial encoder state could
be zero- or non-zero with any final state; or, code block-by-block by appending zero
tails after bit blocks so that the initial and the final encoder states are both zero. The
ZeroTail parameter specifies this implementation; if ZeroTail = YES, then zero tails
must be appended before input to this component.

Each firing, if ZeroTail = YES, (N + K — 1) Out tokens are produced, when (N + K

— 1)/ R In tokens are consumed; If ZeroTail = NO, 1 Out token is produced for 1/ R
In tokens consumed.

For example, in CDMA access channel, CC(3, 1, 9) with zero tail is used in which the
convolutional code rate R is 1/3 and the bit sequence length is 88. CodingRate is set
to rate 1/3, ZeroTail = YES and BitSequencelLength = 88.Each firing, 96 Out tokens
are produced when 288 In tokens are consumed.

ViterbiDecoder supports the 1/ n coding rate only. Convolutional codes with k/ n ( k
>1) are not supported by this component because: the coding and decoding will be
more complex (this is also the reason why convolutional codes with a k/n (k >1)
coding rate are seldom used in real communication systems); and, even
convolutional codes with a k/ n (k >1) coding rate are used that are typically
implemented by puncturing the convolutional code with a 1/ n coding rate.

. Polynomial is the convolutional code generator function. The generator matrix for a
convolutional code is generally semi-infinite because the input sequence is semi-
infinite. As an alternative to specifying the generator matrix, a functionally equivalent
representation is used in which a set of n vectors is specified, one vector for each of
the n modulo-2 adder. 1 in the ith position of the vector indicates that the
corresponding stage in the shift register is connected to the modulo-2 adder; 0 in a
given position indicates that no connection exists between that stage and the
modulo-2 adder.

For example, consider the binary convolutional encoder with constraint length K = 7,
k =1, and n = 2, illustrated in Convolutional Code CC(2,1,7). The connection for y0
is(1,0,1,1,0, 1, 1) from Outputs to Input, while the connection for y1is (1, 1, 1,
1, 1, 0, 1). Generators for this code are conveniently given in octal form as (0133,
0175). So, when k=1, n generators (each of dimension K) are required to specify the
encoder.

Convolutional Code CC(2,1,7)

InpLE

. ZeroTail is used to specify the encoder input sequence character. If ZeroTail = YES,
the encoder input sequence is divided into blocks; block length is N . After each
block, K—1 zeros are appended as tail bits. The total block length of the encoder is (N
+ K — 1), referring to Tail bits removal for ZeroTail = YES. In the decoder, known
information can be used to obtain better performance.

Tail bits removal for ZeroTail = YES

89



Advanced Design System 2011.01 - Numeric Components

Witerhi
—p Decoder p- P CHOP -t
ViterbiDecoder Chop
W1 ExtraTailPSDU
CodingFate=rate 1/2 nRead=Bitsequencelength+ConstraintLength-1
ConstraintLength=ConstraintLength nvyrite=Bitsequencelendgth
Folynormial={0133, 0171} Offset=0
ZeroTail=vES UsePastinputs="ES

BitSequenceLength=BitSequencelength
MaxSurvivorLength=35
Polarity=Megative to logic 1

. BitSequencelLength (valid only when ZeroTail = YES) is used to specify the
information bit length, which indicates the length of uncoded bits. This parameter can
be set to the same value in the encoder and the decoder.

. MaxSurvivorLength is the maximum length of the survivor that is stored in memory.
The delay in decoding a long information sequence that has been convolutionally
encoded is usually too long for most practical applications; moreover, memory
required to store the entire length of surviving sequences is large and expensive. A
solution for this is to modify the Viterbi algorithm in such a way that results in a fixed
decoding delay without significantly affecting the optimal performance of the
algorithm.

The modification is to retain at any given time t only the most recent & decoded
informations bits in each surviving sequence. As each new information bit is received,
a final decision is made on the bit received & branches back in the trellis, by
comparing the metrics in the surviving sequences and determining in favor of the bit
in the sequence having the largest metric. If the d chosen is sufficiently large, all
surviving sequences will contain the identical decoded bit & branches back in time.
That is, with high probability, all surviving sequences at time t stem from the same
one as t—0. Experimental simulation has determined that a delay & = 5 K results in a
negligible degradation in the performance relative to the optimum Viterbi algorithm.

. Polarity is used to specify the mapping mode from bit (0, 1) to the NRZ signal level.
Generally, bit 0 is mapped to level 1 and bit 1 is mapped level —1. An alternative is
to map bit 0 to level —1 and bit 1 to level 1.

. InitialState is used to specify the coded sequence character. If the initial state of
encoder is zero-state, the known information can be used to obtain better
performance. If the initial state is not known to be zero, InitialState must be set to a
non-zero state.

. IgnoreNumber is used to specify how much data will be ignored by this component.
Delays in communications systems can be caused by devices or transmission. And,
the delay may be inserted between the encoder and decoder in the form of
meaningless data, so the information must be set in IgnoreNumber.

o If ZeroTail = YES, the value of IgnoreNumberisn x (N + K —1)/ R (nis an
integer and n = 0), and no extra delay will be introduced because it is assumed
the sequence is frame synchronized before input to ViterbiDecoder.

o If ZeroTail = NO, the delay is an integer number n ; this means the symbol
synchronization is achieved before ViterbiDecoder. If n / R is also an integer,
then the delay of output bit sequence will be n / R bits. Otherwise, the delay will
be the minimum integer larger than n / R.

Input sequence requirements are:

If ZeroTail = YES
90



Advanced Design System 2011.01 - Numeric Components

e The input sequence must be frame synchronized; that is, IgnoreNumber must
ben x N /R (nisaninteger and n = 0) and the first valid data must be the
first symbol of the first codeword in that frame.

e The input sequence must be encoded from blocks, each having K—1 zero tails so
that the initial state and final state are all zero-state.

If ZeroTail = NO

e The input sequence must be bit synchronized; that is, the first valid data must
be the first symbol of a codeword.

o If InitialState is set to Zero state, the first valid symbol must be encoded with
zero initial state.

9. The Viterbi algorithm is an optimal method of decoding convolutional codes. Optimal
decoding decisions cannot be made on a symbol-by-symbol basis; instead, the entire
received sequence must be compared with all possible transmitted sequences. The
number of possible transmitted sequences increases exponentially with time, so an
efficient method of comparing sequences is necessary.

The Viterbi algorithm is computationally efficient, but its complexity increases
exponentially with the constraint length of the code. The Viterbi decoder measures
how similar the received sequence is to a transmitted sequence by calculating a
number called path metric (path metric of a sequence is calculated by adding
numbers known as symbol metric, which is a measure of how close a received
symbol is to each of the possible transmitted symbols). The transmitted sequence
corresponding to the smallest path metric is declared to be the most likely sequence.
The Viterbi algorithm for a CC(n, k, K) code is described in the following paragraphs.
Branch Metric Calculation

The branch metric m (@) ;+ at the Jth instant of the a path through the trellis is
defined as the logarithm of the joint probability of the received n-bit symbol rj 1, rj

2...,rjn

' Cin () for the a path. That is,

conditioned on the estimated transmitted n-bit symbol c ; 1 @, c;2 @ ..

{ y

(@ _

mui.—

n
1P fes'™)
i=1

)
n

= Z lDPI;rJ-_.;|CJ-_.;[u]].
-

If Rake receiver is regarded as a part of the channel, for the Viterbi decoder the
channel can be considered to be an AWGN channel. Therefore,

n
(o)
m _,i' = eric_ji
=1

Path Metric Calculation
The path metric M (4) for the a path at the J th instant is the sum of the branch
metrics Belonging to the a path from the first instant to the J th instant. Therefore,
MY Zm[c;_]

Jj=1
Information Sequence Update
There are 2 K merging paths at each node in the trellis and the decoder selects from

91



Advanced Design System 2011.01 - Numeric Components
paths al, a2, ... , a2k the one having the largest metric, namely:

maxiM' ™ M, ~ﬂ&"[m:k]]
This path is known as the survivor.
Decoder Output
When the two survivors have been determined at the J th instant, the decoder
outputs from memory the ( J-L )th information symbol survivor with the largest
metric.

10. ViterbiDecoder Component Validation

BER Measurements lists BER measurements for a rate 1/2 code (g j = 171, 9 ; =

[oa)

133) and a memoryless additive white Gaussian channel. Simulations were made
with hard decision decoding (binary quantization) and soft decision decoding (no
quantization). Simulation results are listed along with results published in
QUALCOMM Technical Data Sheet Q0256; note that the published data and
simulation results agree.

BER Measurements

Eb/No(dB) Hard Decision Soft Decision
Simulated BER QUALCOMM BER Simulated BER QUALCOMM BER(3 bits)

3.0 3.62e-04 8.00e-04

3.5 7.56e-05 2.00e-04

4.0 5.01e-03 6.50e-03 1.11e-05 3.50e-05

4.5 1.79e-03 1.80e-03 2.12e-06 7.00e-06

5.0 5.71e-04 5.50e-04

5.5 1.25e-04 9.00e-05

6.0 2.81e-05 4.00e-05

References

1. S. Lin and D. J. Costello, Jr., Error Control Coding Fundamentals and Applications,
Prentice Hall, Englewood Cliffs NJ, 1983.

2. J. G. Proakis, Digital Communications (Third edition), Publishing House of Electronics
Industry, Beijing, 1998.

92



Advanced Design System 2011.01 - Numeric Components

Numeric Communications Components

8b10bCoder (numeric)
8b10bDecoder (numeric)
64b66bCoder (numeric)
64b66bDecoder (numeric)
ADPCM Coder (numeric)
ADPCM Decoder (numeric)
ADPCM FromBits (numeric)
ADPCM ToBits (numeric)
AWGN Channel (numeric)
BlindDFE (numeric)
BlindFFE (numeric)
BlockPredictor (numeric)
CoderRS (numeric)
DecoderRS (numeric)
DeScrambler (numeric)
DeSpreader (numeric)
DFE (numeric)

FFE (numeric)

FregPhase (numeric)
HilbertSplit (numeric)
InterleaveDeinterleave (numeric)
M PSK (numeric)
NoiseChannel (numeric)
NonlinearDistortion (numeric)
PAMZ2Rec (numeric)
PAM2Xmit (numeric)
PAM4Rec (numeric)
PAM4Xmit (numeric)

PCM BitCoder (numeric)
PCM BitDecoder (numeric)
PhaseShift (numeric)
PSKZ2Rec (numeric)
PSK2Xmit (numeric)
QAM4 (numeric)
QAM4Slicer (numeric)
QAM16 (numeric)
QAM16Decode (numeric)
QAM16Slicer (numeric)
QAM64 (numeric)
QAM64Decode (numeric)
QAM64Slicer (numeric)
RaisedCosine (numeric)
RaisedCosineCx (numeric)
RecSpread (numeric)
Scrambler (numeric)
Spread (numeric)
TelephoneChannel (numeric)
WalshCoder (numeric)
XmitSpread (numeric)

93



Advanced Design System 2011.01 - Numeric Components

The numeric communications components provide basic communication functions on
single data points or arrays of data that are integer, double precision floating point (real),
fixed-point (fixed), or complex values. Each component accepts a specific class of signal
and outputs a resultant signal.

If a component receives another class of signal, the received signal is automatically
converted to the signal class specified as the input of the component. Auto conversion
from a higher to a lower precision signal class may result in loss of information. These
components do not accept any matrix class of signal. The auto conversion from timed,
complex or floating-point (real) signals to a fixed signal uses a default bit width of 32 bits
with the minimum number of integer bits needed to represent the value. For example, the
auto conversion of the real value of 1.0 creates a fixed-point value with precision of 2.30,
and a value of 0.5 would create one of precision of 1.31. For signal conversion rules, refer
to Conversion of Data Types (ptolemy) in the ADS Ptolemy Simulation (ptolemy)
documentation.

Some components accept parameter values that are arrays of data. The syntax for
referencing arrays of data as parameter values includes an explicit list of values, a
reference to a file that contains those values, or a combination of explicit values along
with file references. For details on using arrays of data for parameter values, refer to
Understanding Parameters (ptolemy) in the ADS Ptolemy Simulation (ptolemy)
documentation.

94



Advanced Design System 2011.01 - Numeric Components

8b10bCoder
¢ 3
1 gh/10h o
L2
Encoder

Description: 8b/10b coder
Library: Numeric, Communications
Class: SDF8b10bCoder

Pin Inputs
Pin Name Description Signal Type
1 |Din bits to be coded int

2  Kin control of Din (encoded as data (Kin=0) or encoded as a special character (Kin=1) |int
Pin Outputs

Pin [Name Description [Signal Type
3  |output|coded bits |int

Notes/Equations

1. The 8B/10B transmission code is used to improve the transmission characteristics of
information. The encodings defined by the transmission code ensure that sufficient
transitions are present in the PHY bit stream to make clock recovery possible at the
receiver. Such encoding also greatly increases the likelihood of detecting any single
or multiple bit errors that may occur during transmission and reception of
information. In addition, some of the special code-groups of the transmission code
contain a distinct and easily recognizable bit pattern that assists a receiver in
achieving code-group alignment on the incoming PHY bit stream. The 8B/10B
transmission code has a high transition density, is a run-length-limited code, and is
dc-balanced. The transition density of the 8B/10B symbols ranges from 3 to 8
transitions per symbol.

2. 8B/10B transmission code uses letter notation for describing the bits of an unencoded
information octet and a single control variable. Each bit of the unencoded information
octet contains either a binary zero or a binary one. A control variable, Z, has either
the value D or the value K. When the control variable associated with an unencoded
information octet contains the value D, the associated encoded code-group is
referred to as a data code-group. When the control variable associated with an
unencoded information octet contains the value K, the associated encoded code-
group is referred to as a special code-group.

The bit notation of A, B, C, D, E, F, G, H for an unencoded information octet is used
in the description of the 8B/10B transmission code. The bits A, B, C, D, E, F, G, H are
translated to bits a, b, ¢, d, e, i, f, g, h, j of 10-bit transmission code-groups. The
8B/10B encoder is illustrated in 8B/10B Encoder. Each valid code-group has been
given a name using the following convention: /Dx.y/ for the 256 valid data code-
groups, and /Kx.y/ for special control code-groups, where x is the decimal value of

95




Advanced Design System 2011.01 - Numeric Components
bits EDCBA, and vy is the decimal value of bits HGF. For detailed information, refer to
Tables 36-1 and 36-2 in IEEE Std 802.3, 2000 Edition, Part 3: Carrier sense multiple
access with collision detection (CSMA/CD) access method and physical layer
specifications, Section 36.2.4.

8B/10B Encoder

8 + control

Input to ENCODE function HGFEDCBA

v

s8B10B
Encoder

PCS ENCODE function

Qutput of ENCODE function abcdeifghj
10

3. Each firing,

e Eight tokens are consumed at pin Din, and one token is consumed at pin Kin
(control character). Ten tokens are produced at pin output.
All the bits are input and output serially.
The input at pin Kin is the control variable Z, in which 0 means the value D and
1 means the value K.
The input at pin Din is the unencoded information octet. The LSB bit (A) is input
first, while the MSB (H) is input last.
The output at pin output is the 10-bit transmission code-group. The LSB bit (a)
is output first, while the MSB (j) is output last.

References

1. IEEE Std 802.3, 2000 Edition, Part 3: Carrier sense multiple access with collision
detection (CSMA/CD) access method and physical layer specifications, Section
36.2.4.

96



Advanced Design System 2011.01 - Numeric Components

8b10bDecoder
Q] ghi10b éi
&

Oecoder

Description: 8b/10b decoder
Library: Numeric, Communications
Class: SDF8b10bDecoder

Parameters

Name Description Default Type

Delay number of 10-bit symbol 0 int
delay

Pin Inputs

Pin |[Name |Description Signal Type
1 |input |bits to be decoded |int
Pin Outputs

Pin [Name Description Signal Type
2 |output |decoded data bits |int
3 |Kout |decoded control bits |int

Notes/Equations

1. The 8B/10B decoder is the reverse procedure of 8B/10B encoder. It's illustrated in
8B/10B Decoder.

8B/10B Decoder

97



Advanced Design System 2011.01 - Numeric Components

8 + control
HGFEDCEBA Output of DECODE function

BB/10B _
Decodar PCS DECQODE function
abcdeifghj Input to DECODE function
* 10
001111 1xxx Properly aligned comma+ symbol

For more information on the 8B/10B Coder, refer to 8b10bCoder (numeric).
2. Parameter Description:
Delay specifies the number of 10-bit symbol delay. The decoder begins to work after
10*Delay input tokens.
3. Each firing,
o Ten tokens are consumed at pin input. One token is produced at pin Kout
(control character), and eight tokens are produced at pin output.
e All the bits are input and output serially.
e The input at pin input is the 10-bit transmission code-group. The LSB bit (a) is
input first, while the MSB (j) is input last.
e The output at pin Kout is the decoded control variable Z, in which 0 means the
value D and 1 means the value K.
e The output at pin output is the decoded information octet. The LSB bit (A) is
output first, while the MSB (H) is output last.

References

1. IEEE Std 802.3, 2000 Edition, Part 3: Carrier sense multiple access with collision
detection (CSMA/CD) access method and physical layer specifications, Section
36.2.4.

98



Advanced Design System 2011.01 - Numeric Components

64b66bCoder
5 3

1 G4h/BED A
® Encoder

Description: 64b/66b coder
Library: Numeric, Communications
Class: SDF64b66bCoder

Parameters
Name Description Default Type
Scrambler scramble or not: NO, YES |INO enum

ScramblerlInit |initial state of scrambler {1,1,1,1,1,1,1, |int
1,1,1,1,1,1,1 |array
1,1,1,1,1,1

~

1==r r==r=r=r

r=r r=r=r=—-r

1,1,1,1
1,1,1,1
/111/111/
,1,1,1,1,1,1
1,1,1,1

r=r

r=r

r=r }

r=r=r=—-r

[N N

1,1
1,1
1,1
1,1
1,1
1,1

Pin Inputs

Pin Name |Description Signal Type

1 |input |datato be int
coded

2  |CtrIBits |control bits int

Pin Outputs

Pin Name Description |Signal Type
3 |output coded bits |int

Notes/Equations

1. The 64B/66B transmission code is used to improve the transmission characteristics of
information and to support transmission of control and data characters. The
encodings defined by the transmission code ensure that sufficient transitions are
present in the PHY bit stream to make clock recovery possible at the receiver. Such
encoding also greatly increases the likelihood of detecting any single or multiple bit
errors that may occur during transmission and reception of information. In addition,
the synchronization headers of the code enable the receiver to achieve block
alignment on the incoming PHY bit stream. The 64B/66B transmission code has a
high transition density and is a run-length-limited code.

2. 64B/66B encodes 8 data octets or control characters into a block. Blocks containing
control characters also contain a block type field. Data octets are labeled D ; to D -.

99



Advanced Design System 2011.01 - Numeric Components
Control characters other than /O/, /S/ and /T/ are labeled CO to C 5. The control

character for ordered_set is labeled as O  or O 4 since it is only valid on the first
octet of the XGMII. The control character for start is labeled as S 0OrSy, for the
same reason. The control character for terminate is labeled as T otoT-.

Two consecutive XGMII transfers provide eight characters that are encoded into one
66-bit transmission block. The subscript in the above labels indicates the position of
the character in the eight characters from the XGMII transfers.

Contents of block type fields, data octets and control characters are shown as
hexadecimal values. The LSB of the hexadecimal value represents the first
transmitted bit. For instance, the block type field Ox1le is sent from left to right as
01111000. The bits of a transmitted or received block are labeled TxB<65:0> and
RxB<65:0> respectively where TxB<0> and RxB<0> represent the first transmitted
bit. The value of the sync header is shown as a binary value. Binary values are shown
with the first transmitted bit (the LSB) on the left.

. Blocks consist of 66 bits. The first two bits of a block are the synchronization header
(sync header). Blocks are either data blocks or control blocks. The sync header is 01
for data blocks and 10 for control blocks. Thus, there is always a transition between
the first two bits of a block. The remainder of the block contains the payload. The
payload is scrambled and the sync header bypasses the scrambler. Therefore, the
sync header is the only position in the block that always contains a transition. This
feature of the code is used to obtain block synchronization.

Data blocks contain eight data characters. Control blocks begin with an 8-bit block
type field that indicates the format of the remainder of the block. For control blocks
containing a Start or Terminate character, that character is implied by the block type
field. Other control characters are encoded in a 7-bit control code or a 4-bit O Code.
Each control block contains eight characters.

The format of the blocks is as shown in 64B/66B Encoder. In the figure, the column
labeled Input Data shows, in abbreviated form, the eight characters used to create
the 66-bit block. These characters are either data characters or control characters
and, when transferred across the XGMII interface, the corresponding TXC or RXC bit
is set accordingly. Within the Input Data column, DO through D7 are data octets and
are transferred with the corresponding TXC or RXC bit set to zero. All other
characters are control octets and are transferred with the corresponding TXC or RXC
bit set to one. The single bit fields (thin rectangles with no label in the figure) are
sent as zero and ignored upon receipt.

Bits and field positions are shown with the least significant bit on the left.
Hexadecimal numbers are shown in normal hexadecimal. For example the block type
field Ox1le is sent as 01111000 representing bits 2 through 9 of the 66 bit block. The
least significant bit for each field is placed in the lowest numbered position of the
field.

64B/66B Encoder

100



Advanced Design System 2011.01 - Numeric Components

Input Data E_ Block Payload
n
c
Bit Positionj 0 1] 2 65
Data Block Format:
Dy Dy D2 Da/D4 Ds D D 01 Dy Dy ] D: [ Dy [ Dy I Ds ] Ds I D;
Control Block Formats: IE.I;? Type

CoCyCaCyiCaCe GG 10| Oxle Co Gy Cz Cs Cy | Cs | Cg | Cy
Co Cy €5 C4/0, DD 0] 10 | 2 Cop Cy Co Cs Oy Dy Dy Dy
CyCy Ca CySaDs Ds Dy | 10| 0333 Cp c, Gy G D, D D,
Op Dy D2 DySs D DeD: | 10| 66 oy D, Dy 0, Dy Dy D;
Op Oy D2 D30, Ds D 0] 10| x5 Dy Do Dy Op |08 Ds Ds Dy
So Dy D2 D90 D5 0g D7) 10 | ox78 D D, Ds Ds Ds Ds D,
O Dy D2 D4/CsCs CsCof 10 | owab Dy D2 D3 Oy | Ca Cs Ce C;
T,CyC2C/C4CsCsC, | 10| 087 HH]” Cy Cs Ca Cs Cs Cs Cy
DoTyCa Ca/CsCe CeC: ] 10 | oOx00 Dy C, Cy Cy Cp Cy G,
DpDy T2C4C4CsCsCr 10| oxaa Do Dy ]| e Cs Cs Cs Cz
Do Dy DaTa/CyCs CeCr 10 | 0xba Dy D, D, ‘ l I Cs Cs Ce C;
Dy Dy D304 TsCsCsCr | 10|  Omee Dy Dy Dy Dy Cs Ce Cr
DgDy D, DyD TeCoCy | 10| Oxd2 Dy Dy D2 Dy Dy Ce o
DyDy D2 DyDy D TeCr [ 10| oxen D, D, D D, D, Dy C,
Dy Dy D Dy/Ds Dy D Ty | 10 | 0t Dy D, D, Dy D, Ds Ds

4. Ordered sets are used to extend the ability to send control and status information
over the link such as remote fault and local fault status. Ordered sets consist of a
control character followed by three data characters. Ordered sets always begin on the
first octet of the XGMII. 10 Gigabit Ethernet uses one kind of ordered_set: the
sequence ordered_set. The sequence ordered_set control character is denoted /Q/.
An additional ordered_set, the signal ordered_set, has been reserved and it begins
with another control code. The 4-bit O field encodes the control code. See Table 49-1
in IEEE Std 802.3ae-2002, Part 3: Carrier sense multiple access with collision
detection (CSMA/CD) access method and physical layer specifications, Amendment:
Media Access Control (MAC) Parameters, Physical Layers, and Management
Parameters for 10 Gb/s Operation, Section 49.2. for the mappings.

5. A block is invalid if any of the following conditions exists:

a) The sync field has a value of 00 or 11.

b) The block type field contains a reserved value.

¢) Any control character contains a value not in Table 49-1.

d) Any O code contains a value not in Table 49-1.

e) The set of eight XGMII characters does not have a corresponding block format in
64B/66B Encoder.

6. If parameter Scrambler is set as NO, the payload of the block is not scrambled. If it is
set as YES, the payload of the block is scrambled with a self-synchronizing scrambler.
The scrambler shall produce the same result as the implementation shown in
Scrambler. This implements the scrambler polynomial: G(x) = 1 + x39 + x58. The
parameter ScramblerInit is the initial value of the scrambler according to Scrambler.
Note that, in this 58-element array parameter ScramblerInit , the first element is the
initial value in SO while the 58th element is the initial value in S57. The scrambler is
run continuously on all payload bits. The sync header bits bypass the scrambler.

101




Advanced Design System 2011.01 - Numeric Components

Scrambler

Serial Data Input

A

| 1 |- e

La{ SO L gl SI [ i S2 | w mf S38 T... $39 | fC gl S56 | | S57
Y

Scrambled Data Outpur
7. Each firing,

e 64 tokens are consumed at pin input, and 8 tokens are consumed at pin CtriBits.
66 tokens are produced at pin output.

e The input at pin input are 8 data octets or control characters. For each data
octet or control character, the LSB is input first.

o Each token at pin CtriBits indicates the type of corresponding octet at pin input.
0 indicates data octet while 1 indicates control character.

e All the bits are input and output serially.

References

1. IEEE Std 802.3ae-2002, Part 3: Carrier sense multiple access with collision detection
(CSMA/CD) access method and physical layer specifications, Amendment: Media
Access Control (MAC) Parameters, Physical Layers, and Management Parameters for
10 Gb/s Operation, Section 49.2.

102



Advanced Design System 2011.01 - Numeric Components

64b66bDecoder
@1 Bab/BEh QS:
Ty
Oecoder

Description: 64b/66b decoder
Library: Numeric, Communications
Class: SDF64b66bDecoder

Parameters

Name Description Default Type

Scrambler scramble or not: NO, YES NO enum

ScramblerInit linitial state of scrambler {1,1,1,1,1,1, int
1,1,1,1,1,1,1, |array
1,1,1,1,1,1,1,
1,1,1,1,1,1,1,
1,1,1,1,1,1,1,1,
1,1,1,1,1,1,1,1,
1,1,1,1,1,1,1,1,
1,1,1,1,1,1,1%

Delay number of 66-bit symbol delayed for descrambler |0 int

Pin Inputs

Pin Name Description Signal Type

1 |input |bits to be decoded |int

Pin Outputs

Pin Name |Description Signal Type
2 |output |decoded bits |int
3  |CtriIBits |control bits |int

Notes/Equations

1. The 64B/66B decoder is the reverse procedure of the 64B/66B encoder. For more
information on the 64B/66B Coder, refer to 64b66bCoder (numeric).

2. Parameter Description:
If parameter Scrambler is set as NO, the payload of the block is not scrambled. If it is
set as YES, the payload of the block is scrambled with a self-synchronizing scrambler.
The scrambler shall produce the same result as the implementation shown in
Scrambler. This implements the scrambler polynomial: G(x) = 1 + x39 + x58. The
parameter ScramblerInit is the initial value of the scrambler according to Scrambler.
Note that, in this 58-element array parameter ScramblerInit, the first element is the
initial value in SO while the 58th element is the initial value in S57. The scrambler is
run continuously on all payload bits. The sync header bits bypass the scrambler.

103



Advanced Design System 2011.01 - Numeric Components

Scrambler

Serial Data Input

S0 > SI L S2 el .{ 538
Y

(1 )t
T,{ 539 ]_.SC?_._, 556 | g
Serambled Diata Output

Parameter Delay specifies the number of 66-bit symbol delay. The decoder begins to
work after 66* Delay input tokens.
3. Each firing,
« 66 tokens are consumed at pin input. 64 tokens are produced at pin output, and
8 tokens are produced at pin CtrIBits (with each corresponding to 8 decoded
bits).
o The output at pin output are 8 data octets or control characters. For each data
octet or control character, the LSB is input first.
o Each token at pin CtriBits indicates the type of corresponding output octet at pin
output. 0 indicates data octet while 1 indicates control character.
« All the bits are input and output serially.

857

References

1. IEEE Std 802.3ae-2002, Part 3: Carrier sense multiple access with collision detection
(CSMA/CD) access method and physical layer specifications, Amendment: Media
Access Control (MAC) Parameters, Physical Layers, and Management Parameters for
10 Gb/s Operation, Section 49.2.

104



Advanced Design System 2011.01 - Numeric Components

ADPCM_Coder

PR | A
1 ppi[ADFCN __:2

Description: Adaptive Differential Pulse-Code Modulation Encoder
Library: Numeric, Communications
Class: SDFADPCM_Coder

Parameters

Name Description Default Unit Type Range
StepSize Step size of adaptive LMS prediction filter |1.0e-12 real (o0, o0)
InitialLMS_Taps |initial taps of adaptive LMS prediction filter /1.0 0.0 [15] real array

Range range of PCM signal level 800 int (0, )
Pin Inputs

Pin [Name |Description Signal Type

1 |input |analog input signal |real

Pin Outputs

Pin |[Name |Description Signal Type

2 d unquantized ADPCM prediction error signal |real

3 |u quantized ADPCM prediction error signal |real

Notes/Equations

1. ADPCM_Coder is an adaptive differential pulse-code modulation encoder that

quantizes to 4-bit (2 % levels). The adaptive prediction is done with an LMS (least-
mean square) adaptive filter.

2. The number of taps in the InitialLMS_Taps parameter sets the order of the LMS filter.
The InitialLMS_Taps default value (1.0 0.0 [15]) specifies 16 taps; therefore, the
order of the prediction filter is also 16.

3. ADPCM_Coder works with ADPCM_Decoder and ADPCM_ToBits; the Range parameter
must be set to the same value in each ADPCM component used.

4, Also see: ADPCM_Decoder, ADPCM_FromBits, ADPCM_ToBits, and LMS.

5. For general information regarding numeric communications components, refer to
Numeric Communications Components (numeric).

105



Advanced Design System 2011.01 - Numeric Components

ADPCM_Decoder

Description: Adaptive Differential Pulse-Code Modulation Decoder
Library: Numeric, Communications
Class: SDFADPCM_Decoder

Parameters

Name Description Default Unit Type Range
StepSize step size of adaptive LMS prediction filter |1.0e-12 real (-00, )
InitialLMS_Taps |initial taps of adaptive LMS prediction filter /1.0 0.0 [15] real array

Pin Inputs

Pin [Name |Description Signal Type

1 |input |quantized ADPCM prediction error signal |real
Pin Outputs

Pin [Name Description [Signal Type
2 |output |decoded signal real

Notes/Equations

1. ADPCM_Decoder is an adaptive differential pulse-code modulation decoder. The
adaptive prediction is done with an LMS (least-mean square) adaptive filter.

2. The number of taps in the InitialLMS_Taps parameter sets the order of the LMS filter.
The InitialLMS_Taps default value 1.0 0.0 [15] specifies 16 taps; therefore, the order
of the prediction filter is also 16.

3. The predicted error signal is internally limited to the range —12000 to +12000. This

prevents the LMS algorithm from overflowing the floating-point (real) range in the

event the algorithm becomes unstable. Instability will still be observable, however, as

the output will approach infinity.

ADPCM_Decoder works with ADPCM_Coder and ADPCM_FromBits.

Also see: ADPCM_Coder, ADPCM_FromBits, ADPCM_ToBits, and LMS.

. For information regarding numeric communications component signals, refer to the

Numeric Communications Components (numeric).

o v

106



Advanced Design System 2011.01 - Numeric Components

ADPCM_FromBits

Description: Adaptive Differential Pulse-Code Modulation Error Signal Decoder
Library: Numeric, Communications
Class: SDFADPCM_FromBits

Parameters

Name Description Default Unit Type Range
Range range of PCM signal level |800 int (0, )
Pin Inputs

Pin Name Description Signal Type
1 |input |4-bit encoded ADPCM error signal |int

Pin Outputs

Pin Name Description Signal Type

2 |output quantized ADPCM error signal real

Notes/Equations

1. ADPCM_FromBits decodes a previously encoded quantized ADPCM error signal. For
each set of four input bits received, a single quantized ADPCM error signal value is
produced.

2. ADPCM_FromBits works with ADPCM_ToBits and ADPCM_Decoder; the Range
parameter must be set to the same value in each ADPCM component used.

3. Also see: ADPCM_Coder, ADPCM_Decoder, ADPCM_ToBits.

4. For information regarding numeric communications component signals, refer to
Numeric Communications Components (numeric).

107



Advanced Design System 2011.01 - Numeric Components

ADPCM_ToBits

Description: 4-Bit Adaptive Differential Pulse-Code Modulation Error Signal Decoder
Library: Numeric, Communications
Class: SDFADPCM_ToBits

Parameters

Name Description Default Unit Type Range
Range range of PCM signal level |800 int (0, )
Pin Inputs

Pin Name Description Signal Type

1 |input |quantized ADPCM error signal |real
Pin Outputs

Pin Name Description Signal Type
2 |output |4-bit code for the received ADPCM error signal value |int

Notes/Equations

1. ADPCM_ToBits encodes a previously quantized ADPCM error signal into a set of 4
bits. For each input value received, four 1-bit outputs are produced.

2. ADPCM_ToBits works with ADPCM_FromBits and ADPCM_Coder; the Range

parameter must be set to the same value in each ADPCM component used.

Also see: ADPCM_Coder, ADPCM_Decoder, ADPCM_FromBits.

For information regarding numeric communications component signals, refer to

Numeric Communications Components (numeric).

W

108



Advanced Design System 2011.01 - Numeric Components

AWGN_Channel

A~

Description: Additive White Gaussian Noise Channel
Library: Numeric, Communications
Class: SDFAWGN_Channel

=%

Parameters

Name Description Default Unit Type Range
FwdTaps |forward FIR filter tap to model linear distortion |1 real array
FdbkTaps [feedback FIR filter tap to model linear distortion |0 real array
NoisePwr |variance of the additive white Gaussian noise 0.5 real [0.0, )
Pin Inputs

Pin [Name |Description Signal Type
1 Jinput |input signal |real
Pin Outputs

Pin [Name Description Signal Type
2 |output |output signal |real

Notes/Equations

1. AWGN_Channel simulates a channel with white Gaussian noise and optional linear
distortion. To simulate linear distortion, the input signal is filtered through an FIR
filter and fed back through a second FIR filter. White Gaussian noise with zero mean
and variance NoisePwr is then added to the signal. The default values of FwdTaps and
FdbkTaps cause the signal to be passed through without distortion.

2. AWGN_Channel can be represented as Y = X + G, where G is a zero mean Gaussian

random variable with variance o 2 and X = x k k=0,1,...q9—- 1. Foragiven X, it
follows that Y is Gaussian with mean x  and variance o 2 That is,
1 —(¥Y —xp :I:/"EG:

e
J2n 6

For any given input sequence, X ;, i-1, 2 ..., n, there is a corresponding output

P(Y/X= xp) =

sequenceY,; =X, +G,;,i=1,2,..n.

3. Also see: NoiseChannel.
4. For information regarding numeric communications component signals, refer to
Numeric Communications Components (numeric).

109



Advanced Design System 2011.01 - Numeric Components

References

1. J. G. Proakis, Digital Communications, McGraw-Hill, 1989.

110



Advanced Design System 2011.01 - Numeric Components

BlindDFE
—pf 1L P
Blind OFE

Description: Blind decision feedback equalizer
Library: Numeric, Communications
Class: SDFBIlindDFE

Parameters

Name Description Default Type

NumFFtaps number of feed-forward taps 5 int

FFinitial feed-forward filter taps are initialized by users or not: NO, YES NO enum

FFtaps initial feed-forward filter taps (only valid when FFinitial is YES) {0,0,1, |real
0, 0} array

NumFBtaps number of feedback filter taps 2 int

FBinitial feedback filter taps are initialized by users or not: NO, YES NO enum

FBtaps initial feedback filter taps (only valid when FBinitial is YES) {0, 0} real

array
EquAlgorithm |adaptive algorithm: None, CMA, DD CMA enum
Fraction number of samples per symbol at input, range [1, 16]. Fraction=1: 1 int
symbol-spaced equalizer; Fraction=2~16: fractionally spaced equalizer

Alpha step size for tap adjustment le-4 real

SaveFFTapsFile (filename in which to save final FF tap values string

SaveFBTapsFile [filename in which to save final FB tap values string

Pin Inputs

Pin Name Description Signal Type

1 |input |input signal before real

equalizer
Pin Outputs
Pin [Name Description Signal Type

2 |output |output signal after blind decision feedback equalizer real

Notes/Equations

1. Time-dispersive channels can cause intersymbol interference (ISI). For example, in a
multipath scattering environment, the receiver sees delayed versions of a symbol
transmission, which can interfere with other symbol transmissions. An equalizer
attempts to mitigate ISI and thus improve the receiver's performance. This model is
a blind Decision Feedback Equalization (DFE), and it operates in blind equalization
algorithm whether the eyes are closed or opened.

2. In each firing, it consumes Fraction input tokens while produces one output token.

111



Advanced Design System 2011.01 - Numeric Components
3. Implementation:
A block diagram of the equalizer is shown in Block Diagram of the DFE. This equalizer
works in blind equalization modes. During start-up and tracking, this equalizer
operates in blind algorithm whether the eyes are opened or closed.

Block Diagram of the DFE

T

. —

By
o L&

i Cil)

xik)

B(M )

y(k)
elk) Ll
Error function .
— . Slicer
Computing
o
dik)

L

In Block Diagram of the DFE, {x(k)} is the received sequence before equalizer,
{y(k)} is the equalized sequence, (C(0), C(1), ..., C(N-1)) is the taps of feed-forward
transversal filter, (B(1), B(2), ..., B(M)) is the taps of feedback filter. e(k) is the error
signal of the blind equalization algorithm, the decision signal

d(k)

which is the output of the Slicer, a is the step size to adjust the equalizer taps. If
Fraction=1,

t=T

the feed-forward transversal filter is a linear equalizer. Otherwise

T = Fraction xT

where Fraction is a parameter, and the feed-forward transversal filter is a Fractionally
Spaced Equalizer (FSE). N+M is the number of taps for this equalizer; N is parameter
NumFFtaps; M is parameter NumFBtaps; T is the sampling time.

4, Equalization Algorithm
The blind equalizer algorithm works well when the eyes closed. The adaptive
algorithm of CMA and DD are adopted. The difference between LMS algorithm and
the blind algorithm is only the error signal e(k). The error signal e(k) is also the
difference in all of the blind equalization algorithms.

112



Advanced Design System 2011.01 - Numeric Components
The error signal of CMA algorithm is as follows

ecua(k) = y(k)(y'(k) -R")

where R2=1 in binary case.

d(k)

is the decision signal. The error signal of DD algorithm is as follows:
eon(k) = y(k)—d(k)

where
1.0if(y(k) = 0)
-1.0,if(y(k) <0)

The blind equalization algorithm is as follows:
C;’r"i'l = CJE? —D[e(k]x(k]

a is parameter Alpha.

5. For blind equalizers, no reference tap is defined to specify the delay introduced by
the equalizer. A common way for determining the delay is to compare the equalizer
output with the source empirically after the equalizer has converged.

6. Parameter Details:

o NumFFtaps specifies the number of feed-forward taps.

e FFinitial indicates whether the feed-forward filter taps are initialized by users or
not. If users don't want to set FFtaps, FFinitial is selected as NO and the FFtaps
are generated in code automatically.

o FFtaps specifies the initial value of feed-forward filter taps if FFinitial is YES.

« NumFBtaps specifies the number of feedback filter taps.

e FBinitial indicates whether the feedback filter taps are initialized by users or not.
If users don't want to set FBtaps, FBinitial is selected as NO and the FBtaps are
generated in code automatically.

e FBtaps specifies the initial value of feedback filter taps if FBinitial is YES.

e EquAlgorithm selects the adaptive algorithm. If NONE is selected, it's used as a
non-adaptive equalizer.

o Alpha specifies the step size for tap adjustment.

e Fraction specifies the number of samples per symbol at input, range [1, 16].

o SaveFFTapsFile specifies the filename in which to save final feed-forward tap
values. If the SaveFFTapsFile string is non-null, a file will be created with the
name given by that string, and the final tap values will be stored there after the
run has completed.

e SaveFBTapsFile specifies the filename in which to save final feedback tap values.
If the SaveFBTapsFile string is non-null, a file will be created with the name
given by that string, and the final tap values will be stored there after the run
has completed.

d(k) =

References

1. John G. Proakis, Digital Communications, Third Edition, McGraw-Hill, 1995.
2. Dimitris G. Manolakis et.al, Statistical and Adaptive Signal Processing, McGraw-Hill,
2000.

113



Advanced Design System 2011.01 - Numeric Components

114



Advanced Design System 2011.01 - Numeric Components

BlindFFE
o o "S
Blind FFE

Description: Blind feed-forward equalizer
Library: Numeric, Communications
Class: SDFBIindFFE

Parameters
Name Description Default
NumFFtaps |number of feed-forward taps 5
FFinitial feed-forward filter taps are initialized by users or not: NO, YES NO
FFtaps initial feed-forward filter taps (only valid when FFinitial is YES) {0, 0, 1,
0, 0}
EquAlgorithm |adaptive algorithm: None, CMA, DD CMA
Fraction number of samples per symbol at input, range [1, 16]. Fraction=1: 1
symbol-spaced equalizer; Fraction=2~16: fractionally spaced equalizer

Alpha step size for tap adjustment le-4
SaveTapsFile [filename in which to save final tap values
Pin Inputs
Pin [Name |Description Signal Type
1 input |input signal before real

equalizer
Pin Outputs
Pin [Name Description Signal Type
2 |output |output signal after blind feed-forward real

equalizer

Notes/Equations

Type
int
enum

real
array

enum
int

real
string

1. Time-dispersive channels can cause intersymbol interference (ISI). For example, in a
multipath scattering environment, the receiver sees delayed versions of a symbol
transmission, which can interfere with other symbol transmissions. An equalizer
attempts to mitigate ISI and thus improve the receiver's performance. This model is

a blind Feed-Forward Equalization (FFE), and it operates in blind equalization

algorithm whether the eyes are closed or opened.

WN

Implementation:

In each firing, it consumes Fraction input tokens while produces one output token.

A block diagram of the equalizer is shown in Block Diagram of the FFE. This equalizer

works in blind equalization modes. During start-up and tracking, this equalizer

operates in blind algorithm whether the eyes are opened or closed.

115



Advanced Design System 2011.01 - Numeric Components

Block Diagram of the FFE

X0k
* 1- * T » T
r X X X
0 ><) fa'dN) > o)) > C(Nﬁ
\\!7,23
yix)
) !
Error function [+ .
—{:}4— . Slicer
| COmputing e
o "
)

In Block Diagram of the FFE, {x(k)} is the received sequence before equalizer,
{y(k)} is the equalized sequence, (C(0), C(1), ..., C(N-1)) is the taps of feed-forward
transversal filter. e(k) is the error signal of the blind equalization algorithm, the
decision signal

d(k)

which is the output of the Slicer, a is the step size to adjust the equalizer taps. If
Fraction=1,

t=T

the feed-forward transversal filter is a linear equalizer. Otherwise

T = Fraction xT

where Fraction is a parameter, and the feed-forward transversal filter is a Fractionally
Spaced Equalizer (FSE). N is the number of taps for this equalizer (parameter
NumFFtaps), T is the sampling time.

. Equalization Algorithm

The blind equalizer algorithm works well when the eyes closed. The adaptive
algorithm of CMA and DD are adopted. The difference between LMS algorithm and
the blind algorithm is only the error signal e(k). The error signal e(k) is also the
difference in all of the blind equalization algorithms.

The error signal of CMA algorithm is as follows

ecua(k) = y(k)(y'(k) -R")

where R2=1 in binary case.

d(k)

is the decision signal. The error signal of DD algorithm is as follows:

116



Advanced Design System 2011.01 - Numeric Components
eop(k) = y(k)—d(k)
where
1.0,if(y(k) = 0)
~1.0.if(y(k) < 0)

The blind equalization algorithm is as follows:
C;’r"i'l = CJE? —D[e(k}x(k)

a is parameter Alpha.

5. For blind equalizers, no reference tap is defined to specify the delay introduced by
the equalizer. A common way for determining the delay is to compare the equalizer
output with the source empirically after the equalizer has converged.

6. Parameter Details:

o NumFFtaps specifies the number of feed-forward taps.

e FFinitial indicates whether the feed-forward filter taps are initialized by users or
not. If users don't want to set FFtaps, FFinitial is selected as NO and the FFtaps
are generated in code automatically.

e FFtaps specifies the initial value of feed-forward filter taps if FFinitial is YES.

« EquAlgorithm selects the adaptive algorithm. If NONE is selected, it's used as a
non-adaptive equalizer.

o Alpha specifies the step size for tap adjustment.

e Fraction specifies the number of samples per symbol at input, range [1, 16].

e SaveTapsFile specifies the filename in which to save final feed-forward tap
values. If the SaveTapsFile string is non-null, a file will be created with the name
given by that string, and the final tap values will be stored there after the run
has completed.

d(k) =

References

1. John G. Proakis, Digital Communications, Third Edition, McGraw-Hill, 1995.
2. Dimitris G. Manolakis et.al, Statistical and Adaptive Signal Processing, McGraw-Hill,
2000.

117



Advanced Design System 2011.01 - Numeric Components

BlockPredictor

=%

(5] ng

Description: Block Linear Predictor
Library: Numeric, Communications
Class: SDFBlockPredictor

Parameters

Name Description Default |Unit Type Range

Order order of the regression (also number of reflection coefficients to 1 int (0, )

generate)

BlockSize (number of input that use each reflection coefficient set 64 int (0, ©)

Pin Inputs

Pin |[Name |Description Signal Type

1

input |input random process |real

Pin Outputs

Pin [Name Description Signal Type

2

output joutput signal |real

Notes/Equations

1.

BlockPredictor consists of Burg's algorithm to estimate the linear predictor
coefficients of an input random process and a block lattice to implement forward
lattice filter with reflection coefficients that are periodically updated from the output
of Burg's algorithm.

The BlockSize parameter tells how often the updates occur. This parameter specifies
how many input samples are to be processed using each set of reflection coefficients
from the output of Burg's algorithm.

The Order parameter tells how many reflection coefficients there are. The order of
the autoregressive model (all-pole signal model) in Burg's algorithm is also given by
the Order parameter.

The coefficients of autoregressive modeling in the BlockPredictor are the estimated
coefficients of the all-pole filter that could have produced the observations (input
data) given a white noise input.The definition of reflection coefficients varies in the
literature.

. The reflection coefficients are the negative of the ones generated by Burg's algorithm

in the BlockPredictor, which correspond to the definition in most other texts, and to
the definition of partial-correlation (PARCOR) coefficients in the statistics literature.
See also: Burg, BlockLattice, BlockAllPole

. For information regarding numeric communications component signals, refer to

Numeric Communications Components (numeric).

118



Advanced Design System 2011.01 - Numeric Components

References

1. J. Makhoul, "Linear Prediction: A Tutorial Review," Proc. IEEE, Vol. 63, pp. 561-580,
Apr. 1975,

2. S. M. Kay, Modern Spectral Estimation: Theory & Application, Prentice-Hall,
Englewood Cliffs, NJ, 1988.

3. S. Haykin, Modern Filters, MacMillan Publishing Company, New York, 1989.

119



Advanced Design System 2011.01 - Numeric Components

CoderRS
1 R-S 2
Encoder

Description: Reed Solomon Encoder
Library: Numeric, Communications
Class: SDFCoderRS

Parameters
Name Description Default Symbol Unit Type Range
GF Define a Galois Field (2~GF) 8 m int [2,30]
Codelength Length of output codeword 255 n int [3,2M-1]
MessagelLength |Length of input message symbols 223 k int [1,Codelength-2]
PrimPoly Coefficients of Primitive Polynonial 10111000 |p(x) int T
1 array

Root The first root of generator 1 m g int [0,2™M-1-(n-

polynomial

Tt PrimPoly must be the coefficients of the m order of polynomial

Pin Inputs

Pin [Name |Description Signal Type
1 in information symbol |int

Pin Outputs

Pin |[Name |Description Signal Type

2 Jout systematical code |int

Notes/Equations

k)]

1. This model is used to perform Reed-Solomon (RS) encoding. RS codes are a class of
block codes that operate on non-binary symbols. The symbols are formed from m

bits of a binary data stream. A code block is then formed with n = 2 ™ - 1 symbols.
In each block, k symbols are formed from the encoder input and (n - k) parity
symbols are added. The code is thus a systematic code. The rate of the code is k/n,
and the code is able to correctuptot = (n -k -1)/2 or (n - k)/2 symbol errors in a
block, depending on whether n - k is odd or even. For example, the code used in the
WCDMA [1] data transmission system is a (36,32) code shortened from RS code

(255,251) defined on Galois Field (2 8). A shortened code can be formed by taking 32
input symbols, padding them out with 219 all zero symbols to form 251 symbols, and
then encoding with a RS code (255,251). The 219 fixed symbols are then discarded

prior to transmission. The input pin consumes k tokens and the output pin produces n

120



Advanced Design System 2011.01 - Numeric Components
tokens for each firing.
2. Implementation

The code format is: RS code (n, k), defined on Galois Field (2 ™).

Galois Field Generator

Galois Fields are set up according to the number of bits per symbol and the number
of symbols per block.

Generate GF (2 ™M) from the irreducible primitive polynomial. It is defined as the
polynomial of least degree, with coefficients in GF(2) and a highest degree coefficient
equal to 1. The polynomial is always of degree m.

The elements of Galois Field can have two representations: exponent or polynomial.

Let a represent the root of the primitive polynomial p(x). Then in GF(2 ™), for any 0
< i< 2mM-2

a = bi(n)+bi(1)a+bi(z)u3+ 4 by (m - 1o

where the binary vector (bi(0), bi(1),..., bilm-1)) is the representation of the integer
polynomial[i]. Now exponent[i] is the element whose polynomial representation is
(bi(0), bi(1),..., bi(m-1)), and exponent[polynomial[i]] = i.

Polynomial representation is convenient for addition, exponent representation for
multiplication.

RS Encoder

The RS generator polynomial is generally defined as

my+ 1 my+2t—1

J...(x—a )

where t is the correctable error number. It can be reduced to a 2t order of polynomial
2

2t
g(x}:I +g2t_lx +...+g|:|

Encoding is done by using a feedback shift register with appropriate connections
specified by the element g ; . The encoded symbol is then

-1

gx) = (x—a )x-a

in(x) xxm_k ]+parity(x)
where in(x) is the polynomial representation of the input data, parity(x) is the

polynomial of the parity symbol.
The RS encoder diagram is illustrated in Reed Solomon Encoder.

Reed Solomon Encoder

Ingut s_f,rmhu:ull

Chitpat BS code

L

3. For information regarding numeric communications component signals, refer to
Numeric Communications Components (numeric).

121



Advanced Design System 2011.01 - Numeric Components

References

1. NTT Mobile Communications Network Inc. "Specifications for W-CDMA Mobile
Communication System Experiment"”, October 9, 1997.
2. S. Lin, D. J. Costello, Error Control Coding Fundamentals and Applications, 1983.

122



Advanced Design System 2011.01 - Numeric Components

DecoderRS
1 R-S 2
Decodsr

Description: Reed Solomon Decoder
Library: Numeric, Communications
Class: SDFDecoderRS

Parameters
Name Description Default Symbol Unit Type Range
GF Define a Galois Field (2~GF) 8 m int [2,30]
Codelength Length of input codewords 255 n int [3,2M-1]
MessagelLength |Length of output message 223 k int [1,Codelength-2]
symbols
PrimPoly Coefficients of primitive 10111000 |p(x) int T
polynomial 1 array
Root First root of generator polynomial |1 m g int [0,2™M-1 - (n -

k)]
t PrimPoly must be the coefficients of the m order of polynomial

Pin Inputs

Pin [Name |Description Signal Type
1 |in received symbol |int
Pin Outputs

Pin |[Name |Description Signal Type
2 |out decoded symbol |int

Notes/Equations

1. This model is used to perform RS decoding via the Berlekamp iterative algorithm [2].

2. The Berlekamp iterative algorithm locates the error in RS code and generates an
error location polynomial. By finding the root of the error location polynomial, the
error position can be determined. If decoding is successful, the information symbols
are output; otherwise, the received data is unaltered. The input pin consumes n
tokens and the output pin produces k tokens.

3. Decoding routines are described here.
For the shortened code, the same number of symbols 0 is inserted into the same
position as CoderRS and a Reed Solomon decoder is used to decode the block. After
decoding, the padded symbols are discarded, leaving the desired information
symbols.
Syndromes indicate erroneous situations. When the generator polynomial g(x) and

123



Advanced Design System 2011.01 - Numeric Components
the received codeword represented by r(x) are given, one or more errors have
occurred during transmission of an encoded block.
Let

2 -1

v(ix) = vg+v X +uax +. U, X

where v(x) is the polynomial representation of the transmitted symbol.
2 -

r(x) = rD+rlx+r2x'—+ +rn_lxn :

where r(x) is the polynomial representation of the received symbol.

Then

rix) = v(x)+el(x)

where e(x) denotes the error patterns.

Ifr;-v;,thene;=0;elsee;=1.

Remember that

v(x) = g(x)Q(x)

where Q(x) is the quotient.

So if a ' is the root of g(x), then v(a’) = 0and r(a’) = e(a’).

Now there is a simple procedure for checking the occurrence of errors at the receiver:
Calculate syndromes s(i), the syndromes are decided by the error patterns:

) mg+ 1
s(1) = e(Q )

If one or more of the syndromes are not equal to zero, one or more symbol errors

occur in the received data. For example, if
m my+1 m F—1
a o L0 C42

are roots of g(x), then
my
s(l)= r(a ")

mg+ 1

s(l)= rio )

my+2t-1
s(2¢) = r(o )
Syndromes are used to find the error location polynomial.
Given the syndromes s(i), the decoding algorithm will synthesize an error location
polynomial. The roots of the polynomial indicate the error positions.
Assuming the received symbols have v symbol errors, the syndromes are
represented as:

s(1) = BT°+B;H°+ B

mu+l mn+l mu+l
5(2) = BJ. + 2 +"'BV

mu+2#—l mu+2t—l mu+2#—l
s(2t) = B + B, +...B,

where the error location is

124



Advanced Design System 2011.01 - Numeric Components
Iy
Bg = a
and
iy
a (1<l<v)
Now the error location polynomial is defined as

Qx) = (1 + BT“JC][] + B;nuxj [1 + BTuxj

"
2 v
= QD+le+qu +...+va

The Berlekamp iterative algorithm is used to construct this polynomial, which is the
key to RS decoding.

The algorithm is described here without proof; for more information, see Ref. [1].
An iterative table will be filled.

u Q"ix) [dy ly n-1y
-1 1 1 0 |-1
0 1 s, 00

1

2..,2t
where
il
is the iterative step number
d_u
Eis the pth step iterative difference

L

(wi, .
is the order of & *)

If

d, =0

then

Qi = QL“](x)

and

bivr =1y

If

d,#0

search for lines in the table to find step p in which d p * 0 and the value of p - Ip is

the maximum, then

Qn;u+lil(x] _ QL”:'(x]—d”d:xt”_p]dp](x]
and
£p+l = max(£”,£p+u—p}
For the two conditions
. (n+1) (w+1)
dp+l_5p+2+gl Sp+l+"'+QE_u+l 5p+2—3_u+1

Iterate until the last line of the table Q (21 (x) is calculated. If the order of the

125



Advanced Design System 2011.01 - Numeric Components
polynomial is greater than t (which means the received codeword block has more
than t errors) the error cannot be corrected.
For non-binary codes, the error values must be known.
The minimum order polynomial is iteratively solved to obtain the least number of
roots (error location number). The inverse element of the root indicates the error
location.
The error value is calculated based on the Ref. [2] equation

(1-—mg) E(Bg_l)
e = B

T+
i =1

Pl
where
2(x) = 1+ (s +Q)x+ (s, + Qs +Q25)x +
e (s, + Qs +Qss, 5+ +Qv}xl"

Then,
out(x) = r(x)—e(x)

References

1. E.R. Berlekamp, Algebraic Coding Theory, McGraw-Hill, New York, 1968.
2. S. Lin, D. J. Costello, Error Control Coding Fundamentals and Applications, 1983.

126



Advanced Design System 2011.01 - Numeric Components

DeScrambler

Description: Input bit sequence descrambler

Library: Numeric, Communications

Class: SDFDeScrambler

C++ Code: See doc/sp_items/SDFDeScrambler.htm/ under your installation directory.

Parameters

Name Description Default |Unit Type Range

Polynomial |generator polynomial for the shift register - decimal, octal, or hex 0440001 int  |(0, )
integer

ShiftReg |initial state of the shift register - decimal, octal, or hex integer 1 int (-00,

)

Pin Inputs

Pin Name Description Signal Type

1 Jinput |input bit sequence (zero or nonzero) |int

Pin Outputs

Pin Name Description Signal Type

2 |output |output bit sequence (zero or one) |int

Notes/Equations

1. This component descrambles the input bit sequence using a feedback shift register.
The taps of the feedback shift register are given by the Polynomial parameter.
This is a self-synchronizing descrambler that will exactly reverse the operation of the
Scrambler component if the corresponding parameter values of Scrambler and
DeScrambler are the same.
A self-synchronized descrambler is shown in Self-Synchronized Descrambler.

Self-Synchronized Descrambler

Shift-register Reczived Input
Irpost G, 1 E:—:'—)—FSignal by,

t :
Y b Y Fin-1 Thn

O D

2. See also, Scrambler (numeric).

¥

A




Advanced Design System 2011.01 - Numeric Components

References

1. E. A. Lee and D. G. Messerschmitt, Digital Communication, Second Edition, Kluwer
Academic Publishers, 1994, pp. 595-603.

128



Advanced Design System 2011.01 - Numeric Components

DeSpreader
L = |’

Description: Frame Synchronized Direct-Sequence Spread Spectrum Demodulator
Library: Numeric, Communications
Class: SDFDeSpreader

Pin Inputs

Pin Name Description Signal Type
1 |in input spread spectrum signal |real

Pin Outputs

Pin Name Description Signal Type

2 |out demodulated signal |real

Notes/Equations

1. DeSpreader is a frame synchronized direct-sequence spread spectrum demodulator.
Each input sample is demodulated with a 31-bit pseudo-noise spreading code. This
despreads the signal.

2. See also Spread, and RecSpread.

References

1. S. Hakin, Digital Communications, John Wiley & Sons, 1988, chapter 9.

129



Advanced Design System 2011.01 - Numeric Components

DFE

P 11 o

DFE

Description: decision feedback equalizer
Library: Numeric, Communications
Class: SDFDFE

Parameters

Name Description Default |Unit |Type

NumFFtaps number of feed-forward taps 5 int

FFinitial feed-forward filter taps are initialized by users or not: NO, |NO enum
YES

FFtaps initial feed-forward filter taps (only valid when FFinitial is {0, 0,0, real
YES) 0, 0} array

NumFBtaps number of feedback filter taps 2 int

FBinitial feedback filter taps are initialized by users or not: NO, YES |NO enum

FBtaps initial feedback filter taps (only valid when FBinitial is YES) |{0, 0} real

array

EquAlgorithm |adaptive algorithm: None, LMS, RLS, ZF LMS enum

TrainSeglLen length of training sequence 1000 int

Fraction number of samples per symbol at input, range [1, 16]. 1 int
Fraction=1: symbol-spaced equalizer; Fraction=2~16:
fractionally spaced equalizer

RefTap index of reference tap for LMS and RLS algorithms, range |3 int
[1, NumFFtaps]

Alpha step size for LMS algorithm le-3 real

Lambda weighting factor for RLS algorithm 0.999 real

Delta small positive constant for RLS algorithm 0.001 real

TargetMSE reference MSE in dB for stopping updating coefficients -40 dB |real
when RLS equalizer reaches this MSE

SaveFFTapsFile (filename in which to save final FF tap values string

SaveFBTapsFile [filename in which to save final FB tap values string

Pin Inputs

Pin Name |Description Signal Type

1 Jinput input signal before equalizer real

2 |TrainSeq |input training sequence for real
equalizer

Pin Outputs

130

Range

(0.0,
1.0)

(0.0,
10.0]
(-100,
100]



Advanced Design System 2011.01 - Numeric Components
Pin [Name Description Signal Type
3 |output |output signal after decision feedback equalizer real

Notes/Equations

1. Time-dispersive channels can cause intersymbol interference (ISI). For example, in a
multipath scattering environment, the receiver sees delayed versions of a symbol
transmission, which can interfere with other symbol transmissions. An equalizer
attempts to mitigate ISI and thus improve the receiver's performance. This model is
a Decision Feedback Equalization (DFE), and it operates with training sequence. In
each firing, the input consumes Fraction input token and TrainSeq consumes one
input token, while produces one output token.

2. A block diagram of the equalizer is shown in Block Diagram of the DFE. This equalizer
works in training sequence mode.

Block Diagram of the DFE

Input Rate F'T o TF I » TF —» TF aI TF :|
‘ J ,‘."-.__\';I‘I;’j. \"\}E: y Fy x‘..?f _I_.-'"JI \]{?E _R'I
| Weight | .-” " Output Rate 1'T
setting s l

A T
i
)

Drecizion

Device

- . d __»
I | I }4——'
*4Tranng

-
-
i

-

Error calculation

Here F means Fraction.

3. If the parameter EquAlgorithm is set to ZF, RLS or LMS, the equalizer works in
training and tracking modes. In the training mode, the training sequence (from Pin
TrainSeq) is used as training sequence. The number of training sequence is
TrainSeglLen. The error signal ek is from the training signal:

ﬂk = IJEE _IJE?
I,
is the input training sequence.
I
k

is the equalized output sequence.

After the training mode, the decision feedback equalizer coefficient is converged and
the equalizer enters into the tracking mode. When the parameter EquAlgorithm is set
to ZF, LMS or RLS, the ZF, LMS or RLS adaptive algorithm is used in tracking mode
correspondingly. The error signal ek is from the decision signal of the equalized

131



Advanced Design System 2011.01 - Numeric Components
signal:

ﬂk = E-;f_I}?

where Ik
is the detected output sequence for binary case:

- 10.I2>0
~1.0. I <0

If the parameter EquAlgorithm is set to NONE, the equalizer works in non-adaptive
mode with fixed coefficients.

LMS Algorithm

The criterion most commonly used in the optimization of the equalizer coefficients is
the minimization of the mean square error (MSE) between the desired equalizer
output and the actual equalizer output.

MSE minimization can be accomplished recursively by use of the stochastic gradient
algorithm introduced by Widrow, called the LMS algorithm. This algorithm is
described by the coefficient update equation

Cri1 = Cptoe X"

where
C | is the vector of the equalizer coefficients at the kth iteration X' | represents the

signal vector.

a is parameter Alpha.

This algorithm is applied on both the forward filter and the feedback filter in DFE
equalizer.

RLS Algorithm

The convergence rate of the LMS algorithm is slow because a single parameter a
controls the rate of adaptation. A fast converging algorithm is obtained if a recursive
least squares (RLS) criterion is adopted for adjustment of the equalizer coefficients.
The RLS iteration algorithm follows.

Calculate output:

Calculate Kalman gain vector:
P x X, *
Kk _ k-1 k

T e
?L+Xk XPk_lXXk'I‘

Update inverse of the correlation matrix:

1
P, == T
;? lx[Pk—l_KkXXk XP.‘?—l]

Update coefficients:
C.‘? = Ck_l—FPk X.Xk""xek
A

is parameter Lamda.
Py

is a diagonal matrix with initial value Delta*I (here I is a diagonal matrix).
132



Advanced Design System 2011.01 - Numeric Components
Delta is parameter Delta.
This algorithm is applied on both the forward filter and the feedback filter in DFE
equalizer.
The updating of coefficients in RLS algorithm will be halted when the MSE averaged
over 100 consecutive symbols is less than a reference MSE defined by TargetMSE.
ZF Algorithm
The zero-forcing (ZF) solution is achieved by forcing the cross-correlation between
the error sequence

e
k
and the desired information sequence {I , } to be zero.

When in the training mode, the coefficients are updated as:
Cre1 = Cptoel,”

When in the tracking mode, the coefficients are updated as:

~ il
C;’r"i'l = Ck+tiekfk

where Ik

is the detected output sequence.

Since ZF is a linear equalizer, this algorithm will be applied only on the forward filter
in DFE equalizer while LMS algorithm is applied on the feedback filter in DFE
equalizer.

4, For LMS and RLS algorithms, the total delay caused by the equalizer is equal to
(RefTap-1)/Fraction. Usually the reference tap is set to the center tap in a linear
equalizer, or the center tap of the forward filter in a DFE equalizer.

For ZF algorithm, no delay is introduced by this equalizer after the equalizer has
converged. Note that ZF algorithm has a condition that the input signal needs to have
the eye open prior to equalization. That is, the convergence of ZF algorithm requires

L
1
J-FD Z |fn‘ <l
n=1
L is the number of ISI affected symbols and the impulse response {fn} are
coefficients of the linear filter model which causes ISI.
5. Parameter Details:

o NumFFtaps specifies the number of feed-forward taps.

e FFinitial indicates whether the feed-forward filter taps are initialized by users or
not. If users don't want to set FFtaps, FFinitial is selected as NO and the FFtaps
are generated in code automatically.

o FFtaps specifies the initial value of feed-forward filter taps if FFinitial is YES.

« NumFBtaps specifies the number of feedback filter taps.

e FBinitial indicates whether the feedback filter taps are initialized by users or not.

If users don't want to set FBtaps, FBinitial is selected as NO and the FBtaps are
generated in code automatically.

FBtaps specifies the initial value of feedback filter taps if FBinitial is YES.
EquAlgorithm selects the equalizer algorithm.

TrainSeqgLen specifies the length of training sequence.

Fraction specifies the number of samples per symbol at input, range [1, 16].
RefTap specifies the index of reference tap for LMS and RLS algorithms, ranged
from 1 to NumFFtaps.

Alpha specifies the step size for tap adjustment.

e Lambda specifies weighting factor for RLS algorithm.

133



Advanced Design System 2011.01 - Numeric Components

e Delta specifies a small positive constant for RLS algorithm.

e TargetMSE specifies the reference MSE in dB for RLS algorithm. RLS equalizer
will stop updating coefficients when the MSE averaged over 100 consecutive
symbols is less than this reference.

« SaveFFTapsFile specifies the filename in which to save final feed-forward tap
values. If the SaveFFTapsFile string is non-null, a file will be created with the
name given by that string, and the final tap values will be stored there after the
run has completed.

e SaveFBTapsFile specifies the filename in which to save final feedback tap values.
If the SaveFBTapsFile string is non-null, a file will be created with the name
given by that string, and the final tap values will be stored there after the run
has completed.

References

1. John G. Proakis, Digital Communications, Third Edition, McGraw-Hill, 1995.
2. Dimitris G. Manolakis et.al, Statistical and Adaptive Signal Processing, McGraw-Hill,
2000.

134



FFE

Advanced Design System 2011.01 - Numeric Components

o3

FFE

_’9@

Description: feed-forward equalizer
Library: Numeric, Communications
Class: SDFFFE

Parameters

Name
NumFFtaps
FFinitial

FFtaps

EquAlgorithm
TrainSeglLen
Fraction

RefTap

Alpha
Lambda

Delta

TargetMSE

SaveTapsFile
Pin Inputs

Pin Name
1 |input
2 [TrainSeq

Pin Outputs

Pin /Name Description

Description
number of feed-forward taps

feed-forward filter taps are initialized by users or not: NO,
YES

initial feed-forward filter taps (only valid when FFinitial is
YES)

adaptive algorithm: None, LMS, RLS, ZF
length of training sequence

number of samples per symbol at input, range [1, 16].
Fraction=1: symbol-spaced equalizer; Fraction=2~16:
fractionally spaced equalizer

index of reference tap for LMS and RLS algorithms, range [1,
NumFFtaps]

step size for LMS algorithm
weighting factor for RLS algorithm

small positive constant for RLS algorithm
reference MSE in dB for stopping updating coefficients when

RLS equalizer reaches this MSE
filename in which to save final tap values

Description Signal Type
input signal before equalizer real
input training sequence for real
equalizer
Signal Type

3 |output output signal after decision feedback equalizer real

Notes/Equations

135

Default |Unit Type Range

5 int

NO enum

{0, 0, O, real

0, 0} array

LMS enum

1000 int

1 int

3 int

le-3 real

0.999 real (0.0,
1.0)

0.001 real (0.0,
10.0]

-40 dB [real (-100,
100]

string



Advanced Design System 2011.01 - Numeric Components

1. Time-dispersive channels can cause intersymbol interference (ISI). For example, in a
multipath scattering environment, the receiver sees delayed versions of a symbol
transmission, which can interfere with other symbol transmissions. An equalizer
attempts to mitigate ISI and thus improve the receiver's performance. This model is
a Feed-Forward Equalization (FFE), and it operates with training sequence. In each
firing, the input consumes Fraction input token and TrainSeqg consumes one input
token, while produces one output token.

2. A block diagram of the equalizer is shown in Block Diagram of the FFE. This equalizer
works in training sequence mode.

Block Diagram of the FFE

Input Signal
x(k) , x(k=1) x(k-2) 1| x(k=N)

cll.l.-

]
I, output

of equalizer

error e,

I, is set to
x;, or represents a known

Adaptive Algorithm that updates each weight ¢,

property of the transmitted

signal

3. If the parameter EquAlgorithm is set to ZF, RLS or LMS, the equalizer works in
training and tracking modes. In the training mode, the training sequence (from Pin
TrainSeq) is used as training sequence. The number of training sequence is
TrainSeglLen. The error signal e , is from the training signal:

ﬂk = I;f —I}?
I
is the input training sequence.
I
k

is the equalized output sequence.

After the training mode, the decision feedback equalizer coefficient is converged and
the equalizer enters into the tracking mode. When the parameter EquAlgorithm is set
to ZF, LMS or RLS, the ZF, LMS or RLS adaptive algorithm is used in tracking mode
correspondingly. The error signal e , is from the decision signal of the equalized

signal:

136



Advanced Design System 2011.01 - Numeric Components
e, = Ix-1I;

where Ik
is the detected output sequence for binary case:

- 10,1 >0
Ik )
-10.I <0

If the parameter EquAlgorithm is set to NONE, the equalizer works in non-adaptive
mode with fixed coefficients.

LMS Algorithm

The criterion most commonly used in the optimization of the equalizer coefficients is
the minimization of the mean square error (MSE) between the desired equalizer
output and the actual equalizer output.

MSE minimization can be accomplished recursively by use of the stochastic gradient
algorithm introduced by Widrow, called the LMS algorithm. This algorithm is
described by the coefficient update equation

Cpy1 = Cpt0ep Xyt

where
C \ is the vector of the equalizer coefficients at the kth iteration X |, represents the

signal vector.

a is parameter Alpha.

RLS Algorithm

The convergence rate of the LMS algorithm is slow because a single parameter a
controls the rate of adaptation. A fast converging algorithm is obtained if a recursive
least squares (RLS) criterion is adopted for adjustment of the equalizer coefficients.
The RLS iteration algorithm follows.

Calculate output:

Calculate Kalman gain vector:
P x X, *
Kk _ k-1 k

T e
?L+Xk XPk_lXXk'I‘

Update inverse of the correlation matrix:
1
P, = -x T
LY [Pk—l_KkXXk XPk_l]
Update coefficients:
C;? = C;?—l_‘_P;f X.Xk'.lz Xﬂk
A
is parameter Lamda.
P,

is a diagonal matrix with initial value Delta*I (here I is a diagonal matrix).

Delta is parameter Delta.

The updating of coefficients in RLS algorithm will be halted when the MSE averaged
over 100 consecutive symbols is less than a reference MSE defined by TargetMSE.

137



Advanced Design System 2011.01 - Numeric Components
ZF Algorithm
The zero-forcing (ZF) solution is achieved by forcing the cross-correlation between
the error sequence

e
k
and the desired information sequence {Ik} to be zero.

When in the training mode, the coefficients are updated as:

C;?'Fl = C;? +|:I€;?Ik;lz

When in the tracking mode, the coefficients are updated as:
~ il

C;’r"i'l = CJE? +D[€;?Ik

where

Ij,

is the detected output sequence.

4, For LMS and RLS algorithms, the total delay caused by the equalizer is equal to
(RefTap-1)/Fraction. Usually the reference tap is set to the center tap in a linear
equalizer, or the center tap of the forward filter in a DFE equalizer.

For ZF algorithm, no delay is introduced by this equalizer after the equalizer has

converged. Note that ZF algorithm has a condition that the input signal needs to have
the eye open prior to equalization. That is, the convergence of ZF algorithm requires

L
1
%Z'fn‘{l

n=1

L is the number of ISI affected symbols and the impulse response {f .} are

coefficients of the linear filter model which causes ISI.

5. Parameter Details:

o NumFFtaps specifies the number of feed-forward taps.

e FFinitial indicates whether the feed-forward filter taps are initialized by users or
not. If users don't want to set FFtaps, FFinitial is selected as NO and the FFtaps
are generated in code automatically.

FFtaps specifies the initial value of feed-forward filter taps if FFinitial is YES.

EquAlgorithm selects the equalizer algorithm.

TrainSegLen specifies the length of training sequence.

Fraction specifies the number of samples per symbol at input, range [1, 16].

RefTap specifies the index of reference tap for LMS and RLS algorithms, ranged

from 1 to NumFFtaps.

Alpha specifies the step size for tap adjustment.

Lambda specifies weighting factor for RLS algorithm.

Delta specifies a small positive constant for RLS algorithm.

TargetMSE specifies the reference MSE in dB for RLS algorithm. RLS equalizer

will stop updating coefficients when the MSE averaged over 100 consecutive

symbols is less than this reference.

e SaveTapsFile specifies the filename in which to save final feed-forward tap
values. If the SaveTapsFile string is non-null, a file will be created with the name
given by that string, and the final tap values will be stored there after the run
has completed.

References

138



Advanced Design System 2011.01 - Numeric Components

1. John G. Proakis, Digital Communications, Third Edition, McGraw-Hill, 1995.
2. Dimitris G. Manolakis et.al, Statistical and Adaptive Signal Processing, McGraw-Hill,
2000.

139



Advanced Design System 2011.01 - Numeric Components

FreqPhase

Description: Frequency Offset or Phase Jitter Sampler
Library: Numeric, Communications
Class: SDFFregPhase

Parameters

Name Description Default Unit Type Range
SampleRate input signal sample rate 2 * PI real |[0, o)
PhaselitterFrequencyHz |frequency of phase jitter distortion to add to signal 0.0 real |[[0.0, o0)
FrequencyOffsetHz frequency offset distorion to add to signal 0.0 real |[[0.0, o0)
PhaselitterAmplitudeDeg |phase jitter peak amplitude, in degrees 0.0 real |(-oc0, )
Pin Inputs

Pin [Name |Description Signal Type
1 in input signal |real
Pin Outputs

Pin |[Name |Description [Signal Type
2 |out output signal |real

Notes/Equations

1. FregPhase can be used to impose a frequency offset or phase jitter, or both, on a
signal in order to model channels (such as telephone channels) that suffer these
impairments.

2. Very low- and very high-frequency signals (near the Nyquist frequency) will be
distorted due to the Hilbert filter.

3. See also, PhaseShift (numeric).

140



Advanced Design System 2011.01 - Numeric Components

HilbertSplit

Description: Real to Analytic Signal Converter
Library: Numeric, Communications
Class: SDFHilbertSplit

Parameters

Name Description Default |Unit Type Range
Delay |processing delay of this block 32 int [0, )
Pin Inputs

Pin Name Description Signal Type
1 in real input signal |real
Pin Outputs

Pin Name Description Signal Type
2 |out analytic output signal complex

Notes/Equations

1. HilbertSplit converts the real input signal into an analytic signal using a phase
splitter. The Delay parameter determines the length and, therefore, the accuracy of
the Hilbert filter used. The Hilbert filter has (2 x Delay + 1) taps. A larger value for
delay gives a more accurate filter, but increases the processing time and the delay
through the system. The component scales the input signal so that input and output

signals have the same rms value.
2. See also, Hilbert (numeric).

References

1. A. V. Oppenheim and R. W. Schafer, Discrete-Time Signal Processing, Prentice-Hall:

Englewood Cliffs, NJ, 1989.

141



Advanced Design System 2011.01 - Numeric Components

InterleaveDeinterleave

1 ."2

Description: Interleaver / Deinterleaver

Library: Numeric, Communications

Class: SDFInterleaveDeinterleave

Derived From: Transpose

C++ Code: See doc/sp_items/SDFInterleaveDeinterleave.html under your installation
directory.

Parameters

Name |Description Default \Unit Type Range
Rows number of rows of the interleave/deinterleave matrix 8 int (0, )
Columns [number of columns of the interleave/deinterleave matrix |8 int (0, o)
Pin Inputs

Pin Name Description Signal Type
1 |input anytype
Pin Outputs

Pin Name Description |Signal Type
2 |output anytype

Notes/Equations

1. This component is a general purpose interleaver/de-interleaver. Every time it fires it
reads (Rows x Columns) samples from its input and writes them to its output in a
different order. Its operation is equivalent to writing the samples read from its input
in @ Rows x Columns matrix row-wise, then reading the matrix elements column-
wise and writing them to the output.

Alternatively, the Transpose (numeric) component in the Numeric Control library can
be used.

142



Advanced Design System 2011.01 - Numeric Components

M_PSK
fl-ary
[

Description: Modulator for M-ary PSK including BPSK, QPSK, 8PSK, 16PSK, 32PSK,
64PSK, 128PSK, 256PSK and 512PSK

Library: Numeric, Communications

Class: SDFM_PSK

Parameters

Name |Description Default Unit Type Range
ModType [Modulation type: BPSK, QPSK, PSK8, PSK16, PSK32, PSK64, PSK128, |QPSK enum
PSK256, PSK512

Pin Inputs

Pin [Name |Description Signal Type
1 |In Input bit sequence |int
Pin Outputs

Pin [Name |Description Signal Type
2 |Out Output complex symbol |complex

Notes/Equations

1. M_PSK performs a M-ary phase shift key (PSK) modulation on the input bit stream,
producing a Gray coded complex output signal. This component supports all popular
M-ary PSK modulations in communication systems, including BPSK (2-BPSK), QPSK
(4-PSK), 8-, 16-, 32-, 64-, 128-, 256-, and 512-PSK.

2. This is a multirate component. In general, if an M-ary PSK modulation is selected by
using ModeType, the component consumes n = log2(M) bits from the input and
produces one modulated complex output. Input bits are Gray encoded and mapped
to an output constellation point as shown in BPSK and QPSK Modulation Using Gray
Encoding to 32-PSK Modulation Using Gray Coding. For example, if ModType = PSKS,
the component consumes log2(8) = 3 bits from the input for Gray coded bits then
maps these coded bits to a corresponding constellation point as shown in 8PSK
Modulation Using Gray Coding.

3. While there are many ways to encode and map sets of input bits into an M-point PSK
constellation, Gray coding is always used for modulations to reduce error probabilities
in communication systems. For M_PSK, a generic Labeling Expansion method
proposed by E. Agrell [1] is used for Gray-encoding the input bits.

For specific mapping details, refer to Mapper (numeric).

BPSK and QPSK Modulation Using Gray Encoding

143



Advanced Design System 2011.01 - Numeric Components

12 1z B4
0.5 0a_ -
0.4 0.4
1 a 11 ao
0.0 = ] .0 ® ®
-0.4— -0.4_]
0.8 -0.e ID
-12 IIII|IIII|IIII|IIII|IIII|IIII -1.2 |||||||||||rlll1|||||||||||||
-2 o0& 04 00 04 08 12 -1z 08 04 00 04 08 12
8PSK Modulation Using Gray Coding
12
g 011
1.0 ]
0.5 oo a0t
g ® ®
0.6
0.4
0.2
i 110 nnn
0.0 =@ @
0.2
0.4
06 11 100
] & C]
0.8
4 101
1.0 ®
12 T | T | T | T | T | T | T | T | T | T | T | T

16-PSK Modulation Using Gray Coding

144



Advanced Design System 2011.01 - Numeric Components

1.2

1.0

0.8—

0.5

0.4

0.2

0.0

-0.2—

S0

06—

-0.8

=104

-1.2

o111 o1t aoio
@
= =
0107 a1
@ @

0100 oo
@ @
1100 0oon
® ®
1101 1000
® ®
1111 1001
® ®
1110 1011
® 1010 @
®

32-PSK Modulation Using Gray Coding

145



Advanced Design System 2011.01 - Numeric Components

1.2
§ 0110000100
1.0 |:|1111m1@m 2 g 001
i 01110 = 2] 00111
08— = =
' 01010 oo710
u = =
08 01011 00010
0] 0]
01001 00011
0.4 & &
01000
0.2 s DDIIZI_]D1
1 11000 0oooo
0.0 ® ®
{1 11001 10000
a2 = = =
- 11011 10001
0.8 ® =
] 11010 10011
&= =
&Ef 11110 10010
® 111 10110 °®
" ® 10111 ©
1 T 41900 1010010101 g
1.0 @ ® ®
1.2 T | T | T | T ] | T | T | T | T | T | T | T | T

References

. E. Agrell, J.Lassing, E. G. Strm, and T. Ottosson, "On the optimality of the binary
reflected Gray code," IEEE Transactions on Information Theory, vol. 50, no. 12, pp.
3170-3182, Dec. 2004.

. M. Jeruchim, P. Balaban and K. Shanmugan, Simulation of Communication Systems,
Plenum Press, New York and London, 1992.

146



Advanced Design System 2011.01 - Numeric Components

NoiseChannel

E_,z

Description: Channel Modeling with Additive White Gaussian Noise
Library: Numeric, Communications
Class: SDFNoiseChannel

=%

Parameters

Name Description Default \Unit Type Range
NoiseVariance |maximum settable value for noise variance |1.0 real |[0, o)
Pin Inputs

Pin Name Description Signal Type
1 in input signal |real
Pin Outputs

Pin Name Description Signal Type
2 |out input signal plus Gaussian noise |real

Notes/Equations

1. NoiseChannel models a channel with additive white Gaussian noise.
If x(t) is a band-limited input signal to a channel and y(t) is the corresponding output
signal then, for the additive white Gaussian noise waveform channel, the real output
is
y(t) = x(t) + n(t)
where n(t) is a sample function of the additive noise process.

2. See also, AWGN_Channel (numeric).

147



Advanced Design System 2011.01 - Numeric Components

NonlinearDistortion

Description: Second and Third Harmonic Distortion
Library: Numeric, Communications
Class: SDFNonlinearDistortion

Parameters
Name Description Default Unit Type Range
SecondHarmonic |proportion of second harmonic of input to add to original 0.0 real |(-oo,
signal )
ThirdHarmonic |proportion of third harmonic of input to add to original signal 0.0 real |(-oo,
)
Pin Inputs

Pin Name Description Signal Type
1 in input signal |real
Pin Outputs

Pin Name Description |Signal Type
2 Jout output signal |real

Notes/Equations

1. With NonlinearDistortion, second- and third-order harmonic distortion is generated by
squaring and cubing the input signal and adding the results in controlled proportions
to the original signal.

output = input + SecondHarmonic x (input) 2 + ThirdHarmonic x (input) 3

148



Advanced Design System 2011.01 - Numeric Components

PAM2Rec

Description: 2-Level Pulse Amplitude Modulation Input Signal Receiver
Library: Numeric, Communications
Class: SDFPAM2Rec

Pin Inputs

Pin Name Description Signal Type

1 |in received PAM signal |real

Pin Outputs

Pin Name Description Signal Type

2 |out bit that corresponds to the received PAM pulse |int

Notes/Equations

1. PAM2Rec receives a 2-level pulse amplitude modulation (PAM) signal and extracts the
transmitted bits. It is assumed that the received PAM signal is a nonreturn-to-zero
polar format with a symbol interval of 16. PAM2Rec will receive signals generated by
the PAM2Xmit component.

2. Once the transmitted bits are extracted, these are descrambled before being sent to
the output. The descrambling polynomial matches that of the PAM2Xmit component
scrambler.

3. See also: DeScrambler (numeric), DownSample (numeric), PAM2Xmit (numeric), and
Scrambler (numeric).

References

1. S. Hakin, Digital Communications, John Wiley & Sons, 1988, chapter 6.

149



Advanced Design System 2011.01 - Numeric Components

PAM2Xmit

Description: 2-Level Pulse Amplitude Modulation Transmitter
Library: Numeric, Communications
Class: SDFPAM2Xmit

Parameters

Name Description Default |Unit Type Range

ExcessBW |excess bandwidth of the square root raised-cosine pulses used to 1.0 real |[0,1]
transmit data

FilterLength |length of square root raised-cosine pulses used to transmit data 32 real |(0, o)
Pin Inputs

Pin [Name |Description Signal Type
1 |in input bits to be transmitted |int
Pin Outputs

Pin |[Name |Description Signal Type
2 |out square root raised-cosine pulses that correspond to the input bits |real

Notes/Equations

1. PAM2Xmit uses 2-level pulse amplitude modulation to convert the input bits into a
transmission signal. The PAM signal is a nonreturn-to-zero polar format with square
root raised-cosine pulses. The excess bandwidth and length of the square root raised-
cosine pulses are set by the ExcessBW and FilterLength parameters. The PAM levels
are +2 and —2; the symbol interval is 16; therefore, for each input bit received a 16-
sample output pulse is produced.

Note that the input bits are scrambled before transmitting. The bits must be
descrambled after these are received.

2. See also: DeScrambler (numeric), PAM2Rec (numeric), Scrambler (numeric).

References

1. S. Hakin, Digital Communications, John Wiley & Sons, 1988, chapter 6.

150



Advanced Design System 2011.01 - Numeric Components

PAM4Rec

Description: 4-Level Pulse Amplitude Modulation Input Signal Receiver
Library: Numeric, Communications
Class: SDFPAM4Rec

Pin Inputs

Pin Name Description Signal Type

1 |in received PAM signal |real

Pin Outputs

Pin Name Description Signal Type

2 |out bit that corresponds to received PAM pulse |int

Notes/Equations

1. PAM4Rec receives a 4-level pulse amplitude modulation signal and extracts the
transmitted bits. The four levels should be -3, -1, +1, and +1. It is assumed that
the received PAM format has a symbol interval of 16. PAM4Rec will receive signals
generated by PAM4Xmit.

Once the transmitted bits are extracted, these are descrambled before being sent to
the output. The descrambling polynomial matches the PAM4Xmit component
scrambler.

2. See also: DeScrambler (numeric), DownSample (numeric), PAM4Xmit (numeric).

References

1. For more information about pulse amplitude modulation, see: S. Hakin, Digital
Communications, John Wiley & Sons, 1988, chapter 6.

151



Advanced Design System 2011.01 - Numeric Components

PAM4Xmit

Description: 4-Level Pulse Amplitude Modulation Transmitter
Library: Numeric, Communications
Class: SDFPAM4Xmit

Parameters

Name Description Default |Unit Type Range

ExcessBW |excess bandwidth of square root raised-cosine pulses used to 1.0 real |[0,1]
transmit data

FilterLength |length of square root raised-cosine pulses used to transmit data 32 real |(0, o)
Pin Inputs

Pin [Name |Description Signal Type
1 |in input bits to be transmitted |int
Pin Outputs

Pin |[Name |Description Signal Type
2 |out square root raised-cosine pulses that correspond to the input bits |real

Notes/Equations

1. PAM4Xmit uses 4-level pulse amplitude modulation to convert pairs of input bits into
a transmission signal. The input bits are first scrambled before transmitting. The bits
must be descrambled after these are received.

The PAM format used is a nonreturn-to-zero polar format with square root raised-
cosine pulses. The excess bandwidth and length of the square root raised-cosine
pulses are set by the ExcessBW and FilterLength parameters. The PAM levels are +3,
+1, —1, and —3. The symbol interval is 16; therefore, for each two input bits
received a 16-sample output pulse is produced.

2. See also: DeScrambler (numeric), PAM4Rec (numeric), Scrambler (numeric).

References

1. S. Hakin, Digital Communications, John Wiley & Sons, 1988, chapter 6.

152



Advanced Design System 2011.01 - Numeric Components

PCM_BitCoder

Description: Pulse-Code Modulation Encoder
Library: Numeric, Communications
Class: SDFPCM_BitCoder

Pin Inputs

Pin Name Description Signal Type
1 in analog input signal with values from -4000 to 4000 real

Pin Outputs

Pin Name Description Signal Type

2 |out PCM encoded bits |int

Notes/Equations

1. PCM_BitCoder is a 64-kbits-per-second pulse-code modulation encoder. Each input
value is companded and quantized to 8 bits that are then sent to the output.

2. The encoding follows the CCITT Recommendation G.711.

3. PCM_BitCoder works with PCM_BitDecoder (numeric), which performs the reverse
operation.

153



Advanced Design System 2011.01 - Numeric Components

PCM_BitDecoder

Description: Pulse-Code Modulation Decoder
Library: Numeric, Communications
Class: SDFPCM_BitDecoder

Pin Inputs

Pin Name Description Signal Type

1 |in PCM encoded bits |int

Pin Outputs

Pin Name Description Signal Type

2 Jout corresponding analog signal value |real

Notes/Equations

1. PCM_BitDecoder is a 64-kbits-per-second pulse-code modulation decoder. Each set of
8 input bits is mapped to its decoded analog value that is then sent to the output.

2. The decoding follows the CCITT Recommendation G.711.

3. PCM_BitDecoder works with the PCM_BitCoder (numeric) component, which performs
the reverse operation.

154



Advanced Design System 2011.01 - Numeric Components

PhaseShift

Description: Phase Shift Distortion
Library: Numeric, Communications
Class: SDFPhaseShift

Parameters

Name Description Default Unit Type Range
HilbertFilterLength |Hilbert filter length |64 int (0, o)
Pin Inputs

Pin Name Description Signal Type

1 in input signal real

2 |shift |phase shift in radians |real
Pin Outputs

Pin |[Name |Description [Signal Type
3 |out output signal |real

Notes/Equations

1. PhaseShift adds phase shift distortion found in channels such as telephone channels.
The output is the input signal with the phase of the input signal shifted by the value
of the shift input.

2. Very low- and very high-frequency signals (near the Nyquist frequency) will be
distorted due to the Hilbert filter. This can be partially overcome by setting the
HilbertFilterLength parameter for a longer, more accurate filter. The default Hilbert
filter is acceptable for most applications.

3. See also, FreqgPhase (numeric).

155



Advanced Design System 2011.01 - Numeric Components

PSK2Rec

Description: Binary Phase-Shift Keying Demodulator
Library: Numeric, Communications
Class: SDFPSK2Rec

Parameters

Name Description Default Unit Type |Range
CarrierFrequency |cosine carier wave frequency 2000 real |(0, )
SamplingRate carrier wave sampling rate 8000 real |(0, )
Pin Inputs

Pin [Name |Description Signal Type
1 in received binary phase-shift keyed transmission signal |real

Pin Outputs

Pin [Name |Description Signal Type

2 Jout binary wave of the received data (-N,+N) |real

Notes/Equations

1. This component accepts a BPSK modulated wave and outputs the recovered binary
data stream.

2. The input sequence is first demodulated by multiplication with a cosine wave
sequence. The demodulated sequence is filtered with a square root of raised-cosine
filter and scaled with an appropriate factor so that the output level of the
downsampler that follows is independent of the filter length (which depends on the
sampling and carrier frequencies given by the designer). Conversion to bits is done
by downsampling, taking the sign of the downsampled values and mapping 1 and -1
to 1 and O, respectively. Note that if a BPSK transmitter (PSK2Xmit) and receiver
(PSK2Rec) are concatenated, the output bit stream will be delayed by one bit with
respect to the input bit stream; this is due to the delay introduced by the filters.

3. See also, PSK2Xmit (numeric).

References

1. S. Hakin, Digital Communications, John Wiley & Sons, 1988, chapter 7.

156



Advanced Design System 2011.01 - Numeric Components

PSK2Xmit

Description: Binary Phase-Shift Keying Modulator
Library: Numeric, Communications
Class: SDFPSK2Xmit

Parameters

Name Description Default Unit Type |Range
CarrierFrequency |cosine carrier wave frequency 2000 real |(0, )
SamplingRate carrier wave sampling rate 8000 real |(0, )
Pin Inputs

Pin [Name |Description Signal Type

1 |in binary wave (polar from) to be modulated real

Pin Outputs

Pin [Name |Description Signal Type

2 |out binary phase shift keyed transmission signal |real

Notes/Equations

1. This component accepts a binary bit stream and outputs a BPSK modulated wave.

2. The input bit stream is first converted to an NRZ waveform that is then filtered by a
square root of raised-cosine filter. The interpolation factor of the filter is chosen so
that the rate at the output of the filter matches the sampling rate. The filtered
sequence is scaled with an appropriate factor so that the amplitude level at the
output of the transmitter is independent of the filter length (which depends on the
sampling and carrier frequencies given by the designer). The sequence is then

multiplied by a cosine wave resulting in a BPSK modulated wave.
3. See also, PSK2Rec (numeric).

References

1. S. Hakin, Digital Communications, John Wiley & Sons, 1988, chapter 7.

157



Advanced Design System 2011.01 - Numeric Components

Description: 4-State Quadrature Amplitude Modulator
Library: Numeric, Communications
Class: SDFQAM4

Pin Inputs

Pin Name Description Signal Type

1 |in input bit sequence |int

Pin Outputs

Pin Name Description Signal Type

2 Jout output symbol sequence |complex

Notes/Equations

1. QAM4 performs a 4-point quadrature amplitude modulation on the input bit stream,
producing a complex output signal. The component consumes 2 bits from the input
for each complex valued output it produces. Mapping of the 2 bits to the 4 points
uses Gray encoding, that is:

Input Bits --> |Output Point

0,1 > (-1, 1)
0,0 > (1, 1)
1,1 > (-1, -1)
1,0 -> (1, -1)

2. There are many ways to map sets of 2 bits into a 4-point grid; therefore, there are
many different variations of 4QAM encoding. This component implements one of
them.

3. See also, QAM4Slicer (numeric).

References

1. S. Hakin, Digital Communications, John Wiley & Sons, 1988, pages 318-322.

158



Advanced Design System 2011.01 - Numeric Components

QAMA4Slicer

0,0
o'0

Description: 4-State Quadrature Amplitude Modulator Slicer
Library: Numeric, Communications
Class: SDFQAM4Slicer

Pin Inputs

Pin Name Description Signal Type
1 |in input signal |complex
Pin Outputs

Pin Name Description Signal Type
2 Jout output 4-QAM signal at exact grid points |complex

Notes/Equations

1. This component outputs the 4QAM grid point that is geometrically closest to the input
point.

2. The quadrature amplitude modulation grid is assumed to be:
-1, 1301, 1)
-1,-11(1,-1)

3. QAMA4Slicer works with QAM4; refer to QAM4 (numeric) for details of 4QAM encoding.

159



QAM16

QOO0
QOoOo

Qoo0
Qo000

Advanced Design System 2011.01 - Numeric Components

Description: 16-State Quadrature Amplitude Modulator
Library: Numeric, Communications

Class: SDFQAM16

Pin Inputs

Pin Name Description Signal Type

1 |in input bit sequence |int

Pin Outputs

Pin Name Description Signal Type

2 Jout output symbol sequence |complex

Notes/Equations

1. QAM16 performs a 16-point quadrature amplitude modulation on the input bit
stream, producing a complex output signal. The component consumes 4 bits from the
input for each complex valued output it produces. The first 2 bits are Gray and
differentially encoded and are used to select the quadrant of the output point. The
last 2 bits are used to select the point inside the quadrant selected by the first 2 bits.
Mapping of the last 2 bits to the 4 points in each quadrant uses Gray encoding.
Mapping is also invariant to phase rotations that are multiples of 90 degrees.

2. There are many ways to map sets of 4 bits into a 16-point grid; therefore, there are
many different variations of 16QAM encoding. This component implements one of

them.

3. See also: QAM16Decode (numeric) and QAM16Slicer (numeric).

References

1. S. Hakin, Digital Communications, John Wiley & Sons, 1988, pages 318-322.

160



Advanced Design System 2011.01 - Numeric Components

QAM16Decode

Description: 16-State Quadrature Amplitude Modulator Decoder
Library: Numeric, Communications

Class: SDFQAM16Decode

Pin Inputs

Pin Name Description Signal Type

1 |in input signal |complex
Pin Outputs
Pin Name Description Signal Type

2 |out output bit sequence |int

Notes/Equations

1. QAM16Decode decodes the 16QAM input signal into an output bit stream. It is
assumed that the input 16QAM signal was encoded using the QAM16 component. For
each value of the input, 4 bits are written at the output.

2. See also: QAM16 (numeric) and QAM16Slicer (numeric).

161



Advanced Design System 2011.01 - Numeric Components

QAM16Slicer

o
[ [l [e]s]
QT

Description: 16-State Quadrature Amplitude Modulator Slicer
Library: Numeric, Communications
Class: SDFQAM16Slicer

Pin Inputs

Pin Name Description Signal Type
1 |in input signal |complex
Pin Outputs

Pin Name Description Signal Type
2 |out output 16-QAM signal at exact grid points complex

Notes/Equations

1. The component outputs the 16QAM grid point that is geometrically closest to the
input point.
2. The quadrature amplitude modulation grid is assumed to be:
(-3, 3) (-1, 3 (1, 3)(3 3
(-3, 10(-1, 1901, 1)(3, 1)
(-3, 1) (-1, -19(1, 133, -1)
(-3, -3) (-1, -3)(1, -3) (3, -3)

3. QAM16Slicer works with QAM16; refer to QAM16 (numeric) for details of 16QAM
encoding.

162



Advanced Design System 2011.01 - Numeric Components

QAM64

1 E-mm 2

Description: 64-State Quadrature Amplitude Modulator

Library: Numeric, Communications
Class: SDFQAM64

Pin Inputs

Pin Name Description Signal Type

1 |in input bit sequence |int

Pin Outputs

Pin Name Description Signal Type

2 Jout output symbol sequence |complex

Notes/Equations

1. QAM64 performs a 64-point quadrature amplitude modulation on the input bit
stream, producing a complex output signal. The component consumes 6 bits from the
input for each complex valued output it produces. The first 2 bits are Gray and
differentially encoded and used to select the quadrant of the output point. The last 4
bits are used to select the point inside the quadrant selected by the first 2 bits.
Mapping of the last 4 bits to the 16 points in each quadrant uses Gray encoding.
Mapping is also invariant to phase rotations that are multiples of 90 degrees.

2. There are many ways to map sets of 6 bits into a 64-point grid; therefore, there are
many different variations of 64QAM encoding. This component implements one of

them.

3. See also: QAM64Decode (numeric) and QAM64Slicer (numeric).

References

1. S. Hakin, Digital Communications, John Wiley & Sons, 1988, pages 318-322.

163



Advanced Design System 2011.01 - Numeric Components

QAM64Decode

1 | B4-QAM 2
" | |Decode

Description: 64-State Quadrature Amplitude Modulator Decoder
Library: Numeric, Communications
Class: SDFQAM64Decode

Pin Inputs

Pin Name Description Signal Type

1 |in input signal |complex
Pin Outputs
Pin Name Description Signal Type

2 |out output bit sequence |int

Notes/Equations

1. QAM64Decode decodes the 64QAM input signal into an output bit stream. It is
assumed that the input 64QAM signal was encoded using the QAM64 component. For
each value at the input, 6 bits are written at the output.

2. See also: QAM64 (numeric) and QAM64Slicer (numeric).

164



Advanced Design System 2011.01 - Numeric Components

QAM64Slicer
1 o |B4-QaM|[ 2
Slicer :

Description: 64-State Quadrature Amplitude Modulator Slicer
Library: Numeric, Communications
Class: SDFQAM64Slicer

Pin Inputs

Pin Name Description Signal Type
1 |in input signal |complex
Pin Outputs

Pin Name Description Signal Type
2 |out output 64-QAM signal at exact grid points |complex

Notes/Equations

1. This component outputs the 64QAM grid point that is geometrically closest to the
input point.

2. The quadrature amplitude modulation grid is assumed to be:
7.7 (-5, 7 -3.7) -1, 7) (1,7 (3.7) (6.7 (7.7
7.8 (-5,8 (-3.5 (1,5 (1,5 (3 5 (55 (7.5
-7, 31 (-5, 3) (-3,3) (1,3 (1,3) (3, 3 (5 3) (7.3
-7, 10 (-5, 1) (-3, 1) (1, 1) (1, 1) (3, 1) (5 1i7. 1)
-7, 1) -5, -1 (-3, -1) (-1, -1 (1, -1) (3, -1) (5 -1 (7, -1}
-7, -3) (-5, -3) (-3, -3) (-1, -3) (1, -3) (3, -3) (5, -3) (7, -3)
-7, -58) (-5, -5) (-3, -5) (-1, -5) (1, -5) (3, -58) (5, -5) (7, -5)
-7, -7V -5, -7V -3, -7) (1, -7 (1, -7 (3, -7 05, -7) (7, -7

3. QAM64Slicer works with QAM64. Refer to QAM64 (numeric) for details of 64QAM
encoding.

165



Advanced Design System 2011.01 - Numeric Components

RaisedCosine

L A P

Description: Raised-cosine filter

Library: Numeric, Communications

Class: SDFRaisedCosine

Derived From: FIR

C++ Code: See doc/sp_items/SDFRaisedCosine.html under your installation directory.

Parameters

Name Description Default Symbol Unit Type Range
Decimation decimation ratio 1 D int [1, c0)
DecimationPhase |[decimation phase 0 int [0,Decimation-1]
Interpolation interpolation ratio 16 I int [1, )

Length number of taps 64 L int [1, o)
Symbollnterval |distance from center to first zero crossing |16 T int [1, c0)
ExcessBW excess bandwidth 1.0 a real |[0,1]
SquareRoot square root raised-cosine pulse: NO, YES |NO enum

Pin Inputs

Pin [Name |Description Signal Type
1 |signalln real
Pin Outputs

Pin Name Description Signal Type
2 |signalOut real

Notes/Equations

1. RaisedCosine implements a finite-impulse response filter with a raised-cosine or
square root raised-cosine frequency response. Excess bandwidth (also referred to as
rolloff factor or alpha) is given by ExcessBW, symbol interval (in number of samples)
of the application is given by SymbolInterval, length of filter (number of taps) is
given by Length.

This filter is derived from the FIR filter that uses an internal polyphase structure. This
algorithm efficiently implements the rational sample rate changes with decimation
and interpolation. For more information on multi-rate concepts, refer to FIR
component documentation.

2. For the ordinary raised-cosine response, ideally the impulse response of the filter
would be

166



Advanced Design System 2011.01 - Numeric Components

(anl)
Ccos OEJ'I:—J
v T

Ny
sin(:'l:
',

M=

hin) =

"
Ny

n n
T= _ el
S AL [MTJ
However, this ideal pulse is centered at 0, but we can only implement causal filters.
Therefore, the impulse response is actually
g(n) = h(n-M)

where
L __ .

M = illeseven
L-1

M = TifLisodd

The impulse response is simply truncated outside this range, so the impulse response
will generally not be symmetric if L is even because it will have one more sample to
the left than to the right of center. Unless this extra sample is 0, the filter will not
have linear phase if L is even. For the ordinary raised-cosine response, the distance
(in number of samples) from the center to the first zero crossing is given by T.

3. The output sample rate is I times the input. The Interpolation default is set to 16
because this pulse is used in digital communication systems for the line coding of
symbols, and upsampling is necessary. In this case, 16 outputs will be produced for
each input. Typically, the value of Interpolation is the same as Symbollnterval.

4, When SquareRoot is selected for the raised-cosine filter with and without
interpolation, some interesting facts can be observed:

o The output of two-cascaded square root raised-cosine filter is approximately
equal to the output of raised-cosine filter without square root when using the
same input signal. In other words: h(n) is a raised-cosine filter and H(z) is a
corresponding frequency response for h(n); h1l(n) is a square-rooted raised-
cosine filter and H1 (z) is a frequency response for h1(n). We should have h(n)
= h1(n) x hi1(n) or H(z) = H1(z)H1(2).

o The output of the raised-cosine filter with interpolation rate I should equal the
output of an UpSample component with its Factor parameter set to I followed by
two cascaded square-root raised-cosine filters when using the same input signal.

e The amplitude output value of square root raised-cosine filter should show
results similar to the amplitude output value of square root raised-cosine filter
with interpolation rate I when using the same input signal. However, it can be
seen that the difference is more output amplitude data from the square root
raised-cosine filter with interpolation rate I compared to square root raised-
cosine filter without interpolation rate. This is because every two input-sampled
data, I zeros are introduced during upsampling.

5. See also, RaisedCosineCx (numeric).

References

1. E. A. Lee and D. G. Messerchmitt, Digital Communication, Kluwer Academic
Publishers, Boston, 1988.
2. I. Korn, Digital Communications, Van Nostrand Reinhold, New York, 1985.

167



Advanced Design System 2011.01 - Numeric Components

168



Advanced Design System 2011.01 - Numeric Components

RaisedCosineCx

Description: Complex Raised-Cosine Filter
Library: Numeric, Communications
Class: SDFRaisedCosineCx

Parameters

Name Description Default Unit Type Range
Decimation decimation ratio 1 int [1, c0)
DecimationPhase |decimation phase 0 int [0,Decimation-\1]
Interpolation interpolation ratio 16 real |[1, o)

Length number of taps 64 int [1, )
Symbollnterval |distance from center to first zero crossing |16 int [1, )

ExcessBW excess bandwidth, between 0 and 1 1.0 real |[0,1]

SquareRoot square root raised-cosine pulse: NO, YES |[NO enum

Pin Inputs

Pin Name Description Signal Type
1 Jinput |input signal |complex
Pin Outputs

Pin [Name Description Signal Type
2 |output |output signal [complex

Notes/Equations

1. RaisedCosineCx implements a pair of FIR filters with a raised-cosine or square root
raised-cosine frequency response. The real part of the complex input goes through
one filter to become the real part of the output signal. Similarly, the imaginary part
of the input goes through the other filter to become the imaginary part of the output
signal.

2. The excess bandwidth (also referred to as rolloff factor or alpha) for both filters is
given by ExcessBW; the symbol interval (in humber of samples) of the application is
given by SymbolInterval; and the length of the filters (the number of taps) is given
by Length. By default, this component upsamples by a factor of 16, so 16 outputs will
be produced for each input unless the Interpolation parameter is changed.

3. For raised-cosine algorithm details, refer to the RaisedCosine (numeric) component.

169



Advanced Design System 2011.01 - Numeric Components

RecSpread

Description: Spread Spectrum Receiver
Library: Numeric, Communications
Class: SDFRecSpread

Parameters

Name Description Default Unit Type Range
PulseDuration |number of times to repeat each transmitted sample |1 int (0, o)
Pin Inputs

Pin Name Description Signal Type
1 |in received direct-sequence spread spectrum signal |real
Pin Outputs

Pin Name Description Signal Type
2 |out received data |real

Notes/Equations

1. RecSpread is a direct-sequence spread spectrum receiver. The received signal is first
downsampled to remove any signal repetition due to the PulseDuration. The received
signal is then modulated with the same 31-bit pseudo-noise spreading code used in
the XmitSpread component. The demodulated signal is then correlated and quantized
to determine if the received signal is 1 or 0.

2. See also DeSpreader (numeric), Spread (numeric), and XmitSpread (numeric).

References

1. For more information about spread spectrum modulation, see: S. Hakin, Digital
Communications, John Wiley & Sons, 1988, chapter 9.

170



Advanced Design System 2011.01 - Numeric Components

Scrambler

Description: Input bit sequence scrambler

Library: Numeric, Communications

Class: SDFScrambler

C++ Code: See doc/sp_items/SDFScrambler.htm! under your installation directory.

Parameters
Name Description Default |Unit Type Range
Polynomial |generator polynomial for the shift register - decimal, octal, or hex 0440001 int
integer
ShiftReg |initial state of the shift register - decimal, octal, or hex integer 1 int
Pin Inputs
Pin |[Name |Description Signal Type
1 |input |input bit sequence (zero or nonzero) |int
Pin Outputs
Pin Name Description Signal Type

2 |output output bit sequence (zero or one) |int

Notes/Equations

1. This component scrambles the input bit sequence using a feedback shift register, as
shown in Feedback Shift Register. The taps of the feedback shift register are given by
the Polynomial parameter, which should be a positive integer. The nth bit of this
integer indicates whether the nth tap of the delay line is fed back. The low-order bit
is called the 0Oth bit, and must be set. The next low-order bit indicates whether the
output of the first delay should be fed back, and so on. The default Polynomial is an
octal number defining the V.22bis scrambler.

2. In scramblers based on feedback shift registers, all the bits to be fed back are
exclusive-ORed together (their parity is calculated), and the result is exclusive-ORed
with the input bit. This result is produced at the output and shifted into the delay
line. With proper choice of polynomial, the resulting output appears highly random
even if the input is highly non-random (for example, all Os or all 1s).

Feedback Shift Register

171



Advanced Design System 2011.01 - Numeric Components

C}. Shit-register Output

Input

Signal

by, — _|_ ] o
3 L B L j hy
oF - -

3. If the polynomial is a primitive polynomial, then the feedback shift register is a so-
called maximal length feedback shift register. This means that with a constant input,

the output will be sequence with period 2 N —1 where N is the order of the
polynomial (the length of the shift register). This is the longest possible sequence.
Moreover, within this period the sequence will appear to be white, in that a calculated
autocorrelation will be very nearly an impulse. Therefore, the scrambler with a
constant input can be very effectively used to generate a pseudo-random bit
sequence.

The maximal-length feedback shift register with constant input will pass through 2 N

—1 states before returning to a state it has been in before. This is one short of the 2 N
states that a register with N bits can take on. This one missing state, in fact, is a
lock-up state, in that if the input is an appropriate constant, the scrambler will cease
to produce random-looking output, and will output a constant. For example, if the
input is all zeros, and the initial state of the scrambler is zero, then the outputs will
be all zero, hardly random. This is easily avoided by initializing the scrambler to some
non-0 state. That is why the default value for the ShiftReg parameter is set to 1.

4. The Polynomial parameter must be carefully chosen. It must represent a primitive
polynomial, which is one that cannot be factored into two (nontrivial) polynomials
with binary coefficients. For details, refer to [1].

5. The table below lists primitive polynomials (expressed as octal numbers so that these
are easily translated into taps on shift register); these will result in maximal-length
pseudo-random sequences if the input is constant and lockup is avoided.

Order |Polynomial Order Polynomial Order Polynomial

11 04005 21 010000005
2 07 12 010123 22 020000003
3 013 13 020033 23 040000041
4 023 14 042103 24 0100000207
5 045 15 0100003 25 0200000011
6 0103 16 0210013 26 0400000107
7 0211 17 0400011 27 01000000047
8 0435 18 01000201 28 02000000011
9 01021 19 02000047 |29 04000000005
10 02011 20 04000011 30 010040000007

The leading 0 in the polynomials indicates an octal nhumber. Note also that reversing
the order of the bits in any of these numbers will also result in a primitive
polynomial. Therefore, the default value for the Polynomial parameter is 0440001 in
octal, or "100 100 000 000 000 001" in binary. Reversing these bits we get "100 000
000 000 001 001" in binary, or 0400011 in octal. This latter number is listed in the
table as the primitive polynomial of order 17. The order is the index of the highest-
order non-0 bit in the polynomial, where the low-order bit has index 0.
Because the polynomial and the feedback shift register are both implemented using
type int, the order of the polynomial is limited by the size of the int data type. For
simplicity and portability, the polynomial is also not allowed to be interpreted as a
172



Advanced Design System 2011.01 - Numeric Components

negative integer, so the sign bit cannot be used. Therefore, if int is a 32-bit word,
then the highest order polynomial allowed is 30 (recall that indexing for the order
starts at 0, and we cannot use the sign bit). The primitive polynomials in the table
are up to order 30 because of 32-bit integer machines.
Both the Polynomial and ShiftReg parameters can be set to a decimal, octal, or hex
value. To enter an octal or hex value, prefix it with 0 or 0x, respectively. For
example, in order to use the primitive polynomial of order 11, set Polynomial to
04005, 0x805, or 2053.

6. See also, DeScrambler (numeric).

References

1. Lee and Messerschmitt, Digital Communication, Second Edition, Kluwer Academic
Publishers, 1994, pp. 595-603.

173



Advanced Design System 2011.01 - Numeric Components

Description: Spread Spectrum Modulator
Library: Numeric, Communications
Class: SDFSpread

Pin Inputs

Pin Name Description Signal Type
1 |in input signal |real
Pin Outputs

Pin Name Description Signal Type
2 Jout input signal modulated by a 31-bit pseudo-noise spreading code |real

Notes/Equations

1. Spread is a direct-sequence spread spectrum modulator. Each input sample is
modulated with a 31-bit pseudo-noise spreading code.
2. See also, DeSpreader (numeric) and XmitSpread (numeric).

References

1. S. Hakin, Digital Communications, John Wiley & Sons, 1988, chapter 9.

174



Advanced Design System 2011.01 - Numeric Components

TelephoneChannel

Description: Telephone Channel Distortion Model
Library: Numeric, Communications
Class: SDFTelephoneChannel

Parameters
Name Description Default Unit Type |Range
LinearDistortionTaps taps values of the FIR filter that models linear 1.0 real
distortion array
Noise additive white Gaussian noise distortion gain 0 real -c0,
)
PhaselitterFrequencyHz |frequency of the phase jitter distortion to add to 0.0 real [0.0,
signal, in Hertz )
PhaselitterAmplitudeDeg |phase jitter peak amplitude, in degrees 0.0 real -c0,
)
FrequencyOffsetHz frequency offset distortion to add to the signal, in 0.0 real [0.0,
Hertz )
SecondHarmonic proportion of the second harmonic of the input that |0.0 real -00,
is added to the original signal )
ThirdHarmonic proportion of the third harmonic of the input that is 0.0 real -00,
added to the original signal )
Pin Inputs

Pin Name Description Signal Type
1 |in input signal |real
Pin Outputs

Pin Name Description |Signal Type
2 |out output signal |real

Notes/Equations

1. TelephoneChannel models the many types of distortion present in a telephone
channel (such as amplitude distortion and phase distortion). The sampling rate of the
channel is 8000 samples per second.

2. To model linear distortion, such as intersymbol interference, the input signal is
passed through an FIR filter with the taps set by LinearDistortionTaps. Phase jitter
and frequency offset distortions are then added to the signal.

Phase jitter is a consequence of the sensitivity of oscillators used for carrier
generation in single-sideband systems to fluctuations in power supply voltages.
Whereas frequency offset is peculiar to telephone channels and channels with

175



Advanced Design System 2011.01 - Numeric Components
Doppler shift.

3. Nonlinear distortion is modeled by adding the second and third harmonics to the
signal. Nonlinear distortion is due to imperfections in amplifiers and to tracking errors
between A/D and D/A converters.

4, Gaussian noise with zero mean and a variance set by Noise is added. Primarily, there
are four noise sources: quantization noise, thermal noise, impulse noise, and
crosstalk.

5. See also: AWGN_Channel (numeric), NoiseChannel (numeric), and
NonlinearDistortion (numeric).

References

1. E. A. Lee and D. G. Messerschmitt, Digital Communication, Second Edition, Kluwer
Academic Publishers, 1994, pp. 595-603.

176



Advanced Design System 2011.01 - Numeric Components

WalshCoder

|

Walzh Coder

Description: Walsh code generator
Library: Numeric, Communications
Class: SDFWalshCoder

Parameters

Name Description Default Unit Type |Range
Type |Walsh code type: Walsh, Hadamard, OVSF_3GPP |Walsh enum

Length |Code length 8 int [1,8192] T
Index |Code index 0 int [0,Length-

1]
Tt The length used must be integer power of 2.

Pin Outputs

Pin Name Description Signal Type
1 |Out |Output int

Notes/Equations

1. This component is used to generate variable-length Walsh codes. Each firing, 1 token
is produced.

2. If Type = Walsh, the walsh codes are determined by:

3 rink,
hﬁTK = (_1]‘;:“

where
N is the index of the walsh code, [0, Length-1]
N=nJ_1nJ_2...n1n0

K is the index of the chip in a walsh code, [0, Length-1]
K=kjyikj,...kiky

J = log2Length
o (n) =n -1

ry(M)=nj,+n,,

rs (n) = Ny, +Nnj.3

177



Advanced Design System 2011.01 - Numeric Components

ry.g(N)=ny+ng
If Type = Hadamard, the walsh codes are determined by:

AR

H, H,
- g, H}

H,, H,
- i ™
- H.-jm _H.-jm

If Type = OVSF_3GPP, the walsh codes are determined by:

Cy(0) = 1

0| _ 11

c | [1-1

¢ 0 | | ¢ cuo |
. (1) C,(0)  -C,(0)
C, .2 C,(1) C,(1)
C, . (3) | G =€)

c .2 -y |c,@"-1DC,2"-1

LI ACAE IR CHELEEY

References

1. 3GPP Technical Specification TS 25.213 V3.0.0 "Spreading and modulation (FDD),"
October 1999.

178



Advanced Design System 2011.01 - Numeric Components

XmitSpread

Description: Spread Spectrum Transmitter
Library: Numeric, Communications
Class: SDFXmitSpread

Parameters

Name Description Default \Unit Type Range
PulseDuration number of times to repeat each transmitted bit |1 int (0, o)
Pin Inputs

Pin Name Description Signal Type

1 |in input signal to transmit |int

Pin Outputs

Pin Name Description Signal Type

2 |out transmitted signal |int

Notes/Equations

1. XmitSpread is a direct-sequence spread spectrum transmitter. Each input sample to
be transmitted is modulated with a 31-bit pseudo-noise spreading code.

2. The PulseDuration parameter determines how many times each transmitted sample is
repeated. Every input sample will result in 31 x PulseDuration transmitted samples.

3. See also: DeSpreader (numeric), RecSpread (numeric), and Spread (numeric).

References

1. S. Hakin, Digital Communications, John Wiley & Sons, 1988, chapter 9.

179



Advanced Design System 2011.01 - Numeric Components

Numeric Control Components

ActivatePath (numeric)
ActivatePath2 (numeric)
AsyncCommutator (numeric)
AsyncDistributor (numeric)
Bus (numeric)
BusMerge2 (numeric)
BusMerge3 (numeric)
BusMerge4 (numeric)
BusMerge5 (numeric)
BusMerge6 (numeric)
BusMerge7 (numeric)
BusMerge8 (numeric)
BusMerge9 (numeric)
BusSplit2 (numeric)
BusSplit3 (numeric)
BusSplit4 (numeric)
BusSplit5 (numeric)
BusSplité (numeric)
BusSplit7 (numeric)
BusSplit8 (numeric)
BusSplit9 (numeric)
Chop (numeric)
ChopVarOffset (numeric)
Commutator (numeric)
Commutator2 (numeric)
Commutator3 (numeric)
Commutator4 (numeric)
Delay (numeric)

DeMux (numeric)
DeMux2 (numeric)
Distributor (numeric)
Distributor2 (numeric)
Distributor3 (numeric)
Distributor4 (numeric)
DownSample (numeric)
DSampleWOffset (numeric)
EnableUDSample (numeric)
Fork (numeric)

Fork2 (numeric)

Fork3 (numeric)

Fork4 (numeric)

Fork5 (numeric)

Forké (numeric)

Fork7 (numeric)

Fork8 (numeric)

Fork9 (numeric)

IfElse (numeric)
InitDelay (numeric)

Mux (numeric)

180



Advanced Design System 2011.01 - Numeric Components
Mux2 (numeric)

Repeat (numeric)
Reverse (numeric)
Trainer (numeric)
Transpose (numeric)
UpSample (numeric)
VarDelay (numeric)

The Numeric Control components library contains components that control signal flow in a
data flow graph. These include signal bus merge, signal bus split, signal fork, signal
distributor, signal commutator, and more. All of these components accept as inputs any
signal class and output signals of the same class after the signal control operation is
performed.

181



Advanced Design System 2011.01 - Numeric Components

ActivatePath

1 — ."2

Description: Activate or remove succeeding blocks
Library: Numeric, Control
Class: SDFActivatePath

Parameters

Name |Description Default Unit Type Range
Activate |"YES" to activate succeeding blocks: NO, YES |YES enum

Pin Inputs

Pin Name Description Signal Type
1 Jinput multiple anytype
Pin Outputs

Pin Name Description |Signal Type
2 |output multiple anytype

Notes/Equations

1. ActivatePath is used to activate or remove the succeeding blocks in a schematic
design.

2. ActivatePath operates at the graph level. When the Activate parameter is set to NO,

the succeeding block will be completely removed from the graph before the

simulation starts.

The Activate parameter cannot be swept.

ActivatePath does not match impedances for timed signals.

For general information regarding numeric control components, refer to Numeric

Control Components (numeric).

nhw

182



Advanced Design System 2011.01 - Numeric Components

ActivatePath2

2 4
1 ==
[>

Description: Activate or remove succeeding blocks
Library: Numeric, Control
Class: SDFActivatePath2

Parameters

Name |Description Default Unit Type Range
Activate |"YES" to activate succeeding blocks: NO, YES |YES enum

Pin Inputs

Pin Name Description Signal Type

1 |inputl multiple anytype
2 |input2 multiple anytype
Pin Outputs

Pin [Name |Description Signal Type
3  |outputl multiple anytype
4  |output2 multiple anytype

Notes/Equations

1. ActivatePath2 is used to activate or remove the succeeding blocks in a schematic
design.

2. ActivatePath2 operates at the graph level. When the Activate parameter is set to NO,
the succeeding block will be completely removed from the graph before the
simulation starts.

3. When activated (Activate = YES), outputl is connected to inputl, output2 is

connected to input2.

The Activate parameter cannot be swept.

ActivatePath2 does not match impedances for timed signals.

For general information regarding numeric control components, refer to Numeric

Control Components (numeric).

o s

183



Advanced Design System 2011.01 - Numeric Components

AsyncCommutator
1 a \A ."‘2

Description: Asynchronous Data Commutator

Library: Numeric, Control

Class: SDFAsyncCommutator

C++ Code: See doc/sp_items/SDFAsyncCommutator.html/ under your installation
directory.

Parameters
Name Description Default Unit Type Range
BlockSizes |block sizes read from each input |1 int array |[1, co)T

t for each array element; number of elements in BlockSizes array must equal input bus
width

Pin Inputs

Pin Name Description Signal Type
1 Jinput multiple anytype
Pin Outputs

Pin Name Description |Signal Type
2 |output anytype

Notes/Equations

© Note
Use of this component with timed signals having different characterization frequencies is not
recommended and can lead to unexpected results.

1. AsyncCommutator takes N input signal streams, where N is the input bus width, and
asynchronously combines them into one output signal stream. It consumes B ; input

samples from input#i (i = 1, ... , N), where B, are the elements of the BlockSizes
parameter. It produces B ; + B, + ... + B\, samples on the output. The first B ;
samples at the output come from the first input, the next B , samples come from the

second input, and so on.
2. Example. Let's assume that three signals are connected to the input of
AsyncCommutator:

184



Advanced Design System 2011.01 - Numeric Components
input#1 |a ramp with initial value 0.0 and step 1.0 (0.0, 1.0, 2.0, 3.0, 4.0, 5.0, 6.0, 7.0, ...)
input#2 |a ramp with initial value -0.5 and step -0.5 (-0.5, -1.0, -1.5, -2.0, -2.5, -3.0, -3.5, -4.0, ...)
input#3 |a constant signal with value 3.1 (3.1, 3.1, 3.1, 3.1, 3.1, 3.1, ...)
Let's also assume that the BlockSizes parameter is set to "2 3 2".
Then the output signal will be: 0.0, 1.0, -0.5, -1.0, -1.5, 3.1, 3.1, 2.0, 3.0, -2.0, -
2.5,-3.5, 3.1, 3.1, 4.0, 5.0, -4.0, -4.5, -5.0, 3.1, 3.1, ...
. For general information regarding numeric control components, refer to Numeric
Control Components (numeric).
. See also: Commutator2 (numeric), Commutator3 (numeric), Commutator4
(numeric), AsyncDistributor (numeric), Distributor2 (numeric), Distributor3
(numeric), Distributor4 (numeric).

185



Advanced Design System 2011.01 - Numeric Components

AsyncDistributor

Description: Asynchronous Data Distributor

Library: Numeric, Control

Class: SDFAsyncDistributor

"C++ Code:* See doc/sp_items/SDFAsyncDistributor.html under your installation
directory.

Parameters
Name Description Default Unit Type Range
BlockSizes |block sizes written to each output |1 int array |[1, o)t

t for each array element; number of elements in BlockSizes array must equal output bus
width.

Pin Inputs

Pin Name Description Signal Type
1 |input anytype
Pin Outputs

Pin Name Description |Signal Type
2 |output multiple anytype

Notes/Equations
1. AsyncDistributor takes one input signal stream and asynchronously splits it into N
output signal streams, where N is the output bus width. It consumes B ; + B, + ...
+ B \y samples from the input, where B ; (i = 1, ... , N) are the elements of the
BlockSizes parameter. It produces B ; output samples on output#i (i = 1, ... , N). The
samples on the first output are the first B ; samples of the input, the samples on the
second output are the next B , samples of the input, and so on.

2. Example. Let's assume that the input to the AsyncDistributor is a ramp signal with
initial value 0 and step 1 (0, 1, 2, 3, 4, 5, ...). Let's also assume that the BlockSizes
parameter is set to "1 4 2". Then the three output signals are:

output#10, 7, 14, 21, ...
output#21, 2, 3, 4, 8,9, 10, 11, 15, 16, 17, 18, 22, 23, 24, 25, ...
output#3|5, 6, 12, 13, 19, 20, 26, 27, ...

186



Advanced Design System 2011.01 - Numeric Components
3. For general information regarding numeric control components, refer to Numeric
Control Components (numeric).
4, See also: Distributor2 (numeric), Distributor3 (numeric), Distributor4 (numeric),
AsyncCommutator (numeric), Commutator2 (numeric), Commutator3 (numeric),
Commutator4 (numeric).

187



Advanced Design System 2011.01 - Numeric Components

Bus

Ty pp-2

Description: Bus Expander to specified bus width
Library: Numeric, Control

Class: HOFBus

Derived From: Nop

Parameters

Name Description Default Type Range
BusWidth |BusWidth 1 int  |[2, o)
Pin Inputs

Pin Name Description Signal Type
1 |input multiple anytype
Pin Outputs

Pin Name |Description Signal Type
2 |output multiple anytype

Notes/Equations

1. The Bus component is used between two multiports and expands the input bus to the
output bus width specified.

2. For general information regarding numeric control components, refer to Numeric
Control Components (numeric).

188



Advanced Design System 2011.01 - Numeric Components

BusMerge2

Description: Merge 2 inputs to form a bus of width 2.
Library: Numeric, Control
Class: HOFNop

Pin Inputs

Pin Name |Description |[Signal Type

1 |input#1 anytype
2  |input#2 anytype
Pin Outputs

Pin [Name Description [Signal Type
3  |output multiple anytype

Notes/Equations

1. The BusMerge2 component merges the top and bottom input busses into a single
bus. If the input bus widths are M1 and M2 and the output bus width is N, then N =
M1 + M2 is required. The first M1 outputs come from the first input bus, while the
next M2 outputs come from the second input bus. Both input signals must be of the
same type.

2. For general information regarding numeric control components, refer to Numeric
Control Components (numeric).

3. An example that shows how this component is used can be accessed from the ADS
Main window: File > Open > Example > PtolemyDocExamples >
Numeric_Control_wrk; from the Schematic window, choose File > Open ,
BusMerge2_example.

189



Advanced Design System 2011.01 - Numeric Components

BusMerge3
3
23S o

Description: Merge 3 inputs to form a bus of width 3.
Library: Numeric, Control
Class: HOFNop

Pin Inputs

Pin Name |Description |Signal Type

1 |input#1 anytype
2  |input#2 anytype
3  |input#3 anytype
Pin Outputs

Pin [Name Description [Signal Type
4  |output multiple anytype

Notes/Equations

1. BusMerge3 merges all 3 input busses into a single bus. If the input bus widths are
M1, M2, and M3 and the output bus width is N, then N = M1 + M2 + M3 is required.
The first M1 outputs come from the first input bus, while the next M2 outputs come
from the second input bus, and so on. All signal inputs must be of the same type.

2. For general information regarding numeric control components, refer to Numeric
Control Components (numeric).

3. An example that shows how this component is used can be accessed from the ADS
Main window: File > Open > Example > PtolemyDocExamples >
Numeric_Control_wrk; from the Schematic window, choose File > Open ,
BusMerge3_example.

190



Advanced Design System 2011.01 - Numeric Components

BusMerge4

YYVY

\
,}— >y

Description: Merge 4 inputs to form a bus of width 4.
Library: Numeric, Control

Class: HOFNop

Pin Inputs

Pin Name |Description |Signhal Type

1 |input#1 anytype
2 |input#2 anytype
3  |input#3 anytype
4  |input#4 anytype
Pin Outputs

Pin [Name Description [Signal Type
5 |output multiple anytype

Notes/Equations

1. BusMerge4 merges all 4 input busses into a single bus. If the input bus widths are
M1, M2, M3, and M4 and the output bus width is N, then N = M1 + M2 + M3 + M4 is
required. The first M1 outputs come from the first input bus, while the next M2
outputs come from the second input bus, and so on. All signal inputs must be of the
same type.

2. For general information regarding numeric control components, refer to Numeric
Control Components (numeric).

3. An example that shows how a BusMerge component is used can be accessed from
the ADS Main window: File > Open > Example > PtolemyDocExamples >
Numeric_Control_wrk; from the Schematic window, choose File > Open,
BusMerge2_example, BusMerge3_example, or BusMerge5_example.

191



Advanced Design System 2011.01 - Numeric Components

BusMergeb5

%»’“‘

Description: Merge 5 inputs to form a bus of width 5.
Library: Numeric, Control
Class: HOFNop

= |3 G0 |4 G0
YYvYYY

Pin Inputs

Pin Name |Description Signal Type

1 |input#1 anytype
2 |input#2 anytype
3  |input#3 anytype
4  |input#4 anytype
5 |input#5 anytype
Pin Outputs

Pin [Name Description [Signal Type
6 |output multiple anytype

Notes/Equations

1. BusMerge5 merges all 5 input busses into a single bus. If the input bus widths are
M1, M2, M3, M4, and M5 and the output bus width is N, then N = M1 + M2 + M3 +
M4 + M5 is required. The first M1 outputs come from the first input bus, while the
next M2 outputs come from the second input bus, and so on. All signal inputs must
be of the same type.

2. For general information regarding numeric control components, refer to Numeric
Control Components (numeric).

3. An example that shows how this component is used can be accessed from the ADS
Main window: File > Open > Example > PtolemyDocExamples >
Numeric_Control_wrk; from the Schematic window, choose File > Open,
BusMerge5_example.

192



Advanced Design System 2011.01 - Numeric Components

BusMergeb

YYYYYY
Sy
\

W
k-

Description: Merge 6 inputs to form a bus of width 6.
Library: Numeric, Control

Class: HOFNop

Pin Inputs

Pin Name |Description |Signhal Type

1 |input#1 anytype
2 |input#2 anytype
3  |input#3 anytype
4  |input#4 anytype
5 |input#5 anytype
6 |input#6 anytype
Pin Outputs

Pin Name Description |Signal Type
7 output multiple anytype

Notes/Equations

1. BusMerge6 merges all 6 input busses into a single bus. If the input bus widths are
M1, M2, ..., M6 and the output bus width is N, then N = M1 + M2 ... + M6 is
required. The first M1 outputs come from the first input bus, while the next M2
outputs come from the second input bus, and so on. All sighal inputs must be of the
same type.

2. For general information regarding numeric control components, refer to Numeric
Control Components (numeric).

3. An example that shows how a BusMerge component is used can be accessed from
the ADS Main window: File > Open > Example > PtolemyDocExamples >
Numeric_Control_wrk; from the Schematic window, choose File > Open,
BusMerge2_example, BusMerge3 _example, or BusMerge5_example.

193



Advanced Design System 2011.01 - Numeric Components

BusMerge?

YYYYYYY

\4

Description: Merge 7 inputs to form a bus of width 7.
Library: Numeric, Control

Class: HOFNop

Pin Inputs

Pin Name |Description |Signhal Type

1 |input#1 anytype
2 |input#2 anytype
3  |input#3 anytype
4  |input#4 anytype
5 |input#5 anytype
6 |input#6 anytype
7  |linput#7 anytype
Pin Outputs

Pin Name Description |Signal Type
8 |output multiple anytype

Notes/Equations

1. BusMerge7 merges all 7 input busses into a single bus. If the input bus widths are
M1, M2, ..., M7 and the output bus width is N, then N = M1 + M2 ... + M7 is
required. The first M1 outputs come from the first input bus, while the next M2
outputs come from the second input bus, and so on.

All signal inputs must be of the same type.

2. For general information regarding numeric control components, refer to Numeric
Control Components (numeric).

3. An example that shows how a BusMerge component is used can be accessed from
the ADS Main window: File > Open > Example > PtolemyDocExamples >
Numeric_Control_wrk; from the Schematic window, choose File > Open,
BusMerge2_example, BusMerge3_example, or BusMerge5_example.

194



Advanced Design System 2011.01 - Numeric Components

BusMergeS8

|3 |G8 [ [N O

YYYYYYYY
e, e

Description: Merge 8 inputs to form a bus of width 8.
Library: Numeric, Control

Class: HOFNop

Pin Inputs

Pin Name |Description |Signhal Type

1 |input#1 anytype
2 |input#2 anytype
3  |input#3 anytype
4  |input#4 anytype
5 |input#5 anytype
6 |input#6 anytype
7  |linput#7 anytype
8 |input#8 anytype
Pin Outputs

Pin Name Description |Signal Type
9 |output multiple anytype

Notes/Equations

1. BusMerge8 merges all 8 input busses into a single bus. If the input bus widths are
M1, M2, ..., M8 and the output bus width is N, then N = M1 + M2 + ... + M8 is
required. The first M1 outputs come from the first input bus, while the next M2
outputs come from the second input bus, and so on.

All signal inputs must be of the same type.

2. For general information regarding numeric control components, refer to Numeric
Control Components (numeric).

3. An example that shows how a BusMerge component is used can be accessed from
the ADS Main window: File > Open > Example > PtolemyDocExamples >
Numeric_Control_wrk; from the Schematic window, choose File > Open,
BusMerge2_example, BusMerge3_example, or BusMerge5_example.

195



Advanced Design System 2011.01 - Numeric Components

BusMerge9

Description: Merge 9 inputs to form a bus of width 9.
Library: Numeric, Control

Class: HOFNop

Pin Inputs

Pin Name |Description |Signhal Type

1 |input#1 anytype
2 |input#2 anytype
3  |input#3 anytype
4  |input#4 anytype
5 |input#5 anytype
6 |input#6 anytype
7  |linput#7 anytype
8 |input#8 anytype
9 |input#9 anytype
Pin Outputs

Pin [Name Description [Signal Type
10 |output multiple anytype

Notes/Equations

1. BusMerge9 merges all 9 input busses into a single bus. If the input bus widths are
M1, M2, ..., M9 and the output bus width is N, then N =M1 + M2 +, ... , + M9 is
required. The first M1 outputs come from the first input bus, while the next M2
outputs come from the second input bus, and so on.

All signal inputs must be of the same type.

2. For general information regarding numeric control components, refer to Numeric
Control Components (numeric).

3. An example that shows how a BusMerge component is used can be accessed from
the ADS Main window: File > Open > Example > PtolemyDocExamples >
Numeric_Control_wrk; from the Schematic window, choose File > Open,
BusMerge2_example, BusMerge3_example, or BusMerge5_example.

196



Advanced Design System 2011.01 - Numeric Components

BusSplit2

Description: Split input bus to 2 output buses.
Library: Numeric, Control
Class: HOFNop

Pin Inputs

Pin Name Description Signal Type
1 |input multiple anytype
Pin Outputs

Pin Name Description Signal Type
2 |output#1 anytype
3 |output#2 anytype

Notes/Equations

1. BusSplit2 splits an input bus into two busses. If the input bus width is N, and the

output bus widths are M1 and M2, then N = M1 + M2 is required. The first M1 inputs

go to the first output bus, while the next M2 inputs go to the second output bus.

2. The input to the component is a bus, the bus on the lowest output pin always has a

bus width of 1, and is not settable by the user.

3. BusSplit2 splits the constituent signals of the input bus. It produces 2 single signal
outputs, both of the same type as the input.

4. For general information regarding numeric control components, refer to Numeric
Control Components (numeric).

5. An example that shows how this component is used can be accessed from the ADS
Main window: File > Open > Example > PtolemyDocExamples >
Numeric_Control_wrk; from the Schematic window, choose File > Open,
BusSplit2_example.

197



Advanced Design System 2011.01 - Numeric Components

BusSplit3

Description: Split input bus to 3 output buses.
Library: Numeric, Control
Class: HOFNop

Pin Inputs

Pin Name Description Signal Type

1

input multiple anytype

Pin Outputs

Pin Name Description Signal Type

2
3
4

output#1 anytype
output#2 anytype
output#3 anytype

Notes/Equations

1.

BusSplit3 component splits an input bus into 3 busses. If the input bus width is N,
and the output bus widths are M1, M2, and M3 then N = M1 + M2 + M3 is required.
The first M1 inputs go to the first output bus, while the next M2 inputs go to the
second output bus and so on.

BusSplit3 splits the constituent signals of the input bus. It produces 3 single signal
outputs, all of the same type as the input.

The input to the component is a bus, the bus on the lowest output pin always has a
bus width of 1, and is not settable by the user.

For general information regarding numeric control components, refer to Numeric
Control Components (numeric).

An example that shows how this component is used can be accessed from the ADS
Main window: File > Open > Example > PtolemyDocExamples >
Numeric_Control_wrk; from the Schematic window, choose File > Open,
BusSplit3_example.

198



Advanced Design System 2011.01 - Numeric Components

BusSplit4
e
1 %
= —Hi{ F;
el

Description: Split input bus to 4 output buses.
Library: Numeric, Control
Class: HOFNop

Pin Inputs

Pin /Name Description Signal Type
1 Jinput multiple anytype
Pin Outputs

Pin Name Description |Signal Type

2 |output#1 anytype
3 |output#2 anytype
4  |output#3 anytype
5 |output#4 anytype

Notes/Equations

1. BusSplit4 splits an input bus into 4 busses. If the input bus width is N, and the output
bus widths are M1, M2, M3 and M4, then N = M1 + M2 + M3 + M4 is required. The
first M1 inputs go to the first output bus, while the next M2 inputs go to the second
output bus, and so on.

2. BusSplit4 splits the constituent signals of the input bus. It produces 4 single signal
outputs, all of the same type as the input.

3. The input to the component is a bus, the bus on the lowest output pin always has a
bus width of 1, and is not settable by the user.

4. For general information regarding numeric control components, refer to Numeric
Control Components (numeric).

5. An example that shows how a BusSplit component is used can be accessed from the
ADS Main window: File > Open > Example > PtolemyDocExamples >
Numeric_Control_wrk; from the Schematic window, choose File > Open,
BusSplit2_example, BusSplit3_example, BusSplit5_example, or BusSplit7_example.

199



Advanced Design System 2011.01 - Numeric Components

BusSplith5
.._E

oyl L 24
\[2

Description: Split input bus to 5 output buses.
Library: Numeric, Control
Class: HOFNop

Pin Inputs

Pin /Name Description Signal Type

1

input multiple anytype

Pin Outputs

Pin Name Description |Signal Type

2

[ ) IEN O, I SR OV}

output#1 anytype
output#2 anytype
output#3 anytype
output#4 anytype
output#5 anytype

Notes/Equations

1.

BusSplit5 splits an input bus into 5 busses. If the input bus width is N, and the output
bus widths are M1, M2, M3, M4, and M5, then N = M1 + M2 + M3 + M4 + M5 is
required. The first M1 inputs go to the first output bus, while the next M2 inputs go to
the second output bus, and so on.

BusSplit5 splits the constituent signals of the input bus. It produces 5 single signal
outputs, all of the same type as the input.

. The input to the component is a bus, the bus on the lowest output pin always has a

bus width of 1, and is not settable by the user.
For general information regarding numeric control components, refer to Numeric
Control Components (numeric).

. An example that shows how this component is used can be accessed from the ADS

Main window: File > Open > Example > PtolemyDocExamples >
Numeric_Control_wrk; from the Schematic window, choose File > Open,
BusSplit5_example.

200



Advanced Design System 2011.01 - Numeric Components

BusSplit6

v
..--.""?j%‘?:a.
vy,

Description: Split input bus to 6 output buses.
Library: Numeric, Control
Class: HOFNop

Pin Inputs

Pin /Name Description Signal Type
1 Jinput multiple anytype
Pin Outputs

Pin Name Description |Signal Type

2 |output#1 anytype
3 |output#2 anytype
4  |output#3 anytype
5 |output#4 anytype
6 |output#5 anytype
7 |output#6 anytype

Notes/Equations

1. BusSplit6 splits an input bus into 6 busses. If the input bus width is N, and the output
bus widths are M1, M2, M3, M4, M5, and M6, then N = M1 + M2 + M3 + M4 + M5 +
M6 is required. The first M1 inputs go to the first output bus, while the next M2
inputs go to the second output bus, and so on.

2. BusSplit6 splits the constituent signals of the input bus. It produces 6 single signal
outputs, all of the same type as the input.

3. The input to the component is a bus, the bus on the lowest output pin always has a
bus width of 1, and is not settable by the user.

4, For general information regarding numeric control components, refer to Numeric
Control Components (numeric).

5. An example that shows how a BusSplit component is used can be accessed from the
ADS Main window: File > Open > Example > PtolemyDocExamples >
Numeric_Control_wrk; from the Schematic window, choose File > Open,
BusSplit2_example, BusSplit3_example, BusSplit5_example, or BusSplit7_example.

201



Advanced Design System 2011.01 - Numeric Components

BusSplit7
e

Il

RS

V|2

Description: Split input bus to 7 output buses.
Library: Numeric, Control
Class: HOFNop

Pin Inputs

Pin /Name Description Signal Type

1

input multiple anytype

Pin Outputs

Pin Name Description |Signal Type

O N OO U ~WN

output#1 anytype
output#2 anytype
output#3 anytype
output#4 anytype
output#5 anytype
output#6 anytype
output#7 anytype

Notes/Equations

1.

BusSplit7 splits an input bus into 7 busses. If the input bus width is N, and the output
bus widths are M1, M2, M3, M4, M5, M6, and M7 then N = M1 + M2 + M3 + M4 + M5
+ M6 + M7 is required. The first M1 inputs go to the first output bus, while the next
M2 inputs go to the second output bus, and so on.

BusSplit7 splits the constituent signals of the input bus. It produces 7 single signal
outputs, all of the same type as the input.

The input to the component is a bus, the bus on the lowest output pin always has a
bus width of 1, and is not settable by the user.

For general information regarding numeric control components, refer to Numeric
Control Components (numeric).

An example that shows how this component is used can be accessed from the ADS
Main window: File > Open > Example > PtolemyDocExamples >
Numeric_Control_wrk; from the Schematic window, choose File > Open,
BusSplit7_example.

202



Advanced Design System 2011.01 - Numeric Components

BusSplit8

A .-G
" -% >
\ 4
N

W —»?
\

Description: Split input bus to 8 output buses.
Library: Numeric, Control
Class: HOFNop

Pin Inputs

Pin /Name Description Signal Type
1 Jinput multiple anytype
Pin Outputs

Pin Name Description |Signal Type

2 |output#1 anytype
3 |output#2 anytype
4  |output#3 anytype
5 |output#4 anytype
6 |output#5 anytype
7 |output#6 anytype
8 |output#7 anytype
9 |output#8 anytype

Notes/Equations

1. BusSplit8 splits an input bus into 8 busses. If the input bus width is N, and the output
bus widths are M1, M2, ..., M8 then N = M1 + M2 + ... + M8 is required. The first
M1 inputs go to the first output bus, while the next M2 inputs go to the second
output bus, and so on.

2. BusSplit8 splits the constituent signals of the input bus. It produces 8 single signal
outputs, all of the same type as the input.

3. The input to the component is a bus, the bus on the lowest output pin always has a
bus width of 1, and is not settable by the user.

4. For general information regarding numeric control components, refer to Numeric
Control Components (numeric).

5. An example that shows how a BusSplit component is used can be accessed from the
ADS Main window: File > Open > Example > PtolemyDocExamples >
Numeric_Control_wrk; from the Schematic window, choose File > Open,
BusSplit2_example, BusSplit3_example, BusSplit5_example, or BusSplit7_example.

203



Advanced Design System 2011.01 - Numeric Components

BusSplit9

Description: Split input bus to 9 output buses.
Library: Numeric, Control
Class: HOFNop

Pin Inputs

Pin /Name Description Signal Type
1 Jinput multiple anytype
Pin Outputs

Pin Name Description |Signal Type

2 |output#1 anytype
3 |output#2 anytype
4  |output#3 anytype
5 |output#4 anytype
6 |output#5 anytype
7 |output#6 anytype
8 |output#7 anytype
9 |output#8 anytype
10 |output#9 anytype

Notes/Equations

1. BusSplit9 splits an input bus into 9 busses. If the input bus width is N, and the output
bus widths are M1, M2, ..., M9 then N = M1 + M2 + ... + M9 is required. The first
M1 inputs go to the first output bus, while the next M2 inputs go to the second
output bus, and so on.

2. BusSplit9 splits the constituent signals of the input bus. It produces 9 single signal
outputs, all of the same type as the input.

3. The input to the component is a bus, the bus on the lowest output pin always has a
bus width of 1, and is not settable by the user.

4. For general information regarding numeric control components, refer to Numeric
Control Components (numeric).

5. An example that shows how a BusSplit component is used can be accessed from the
ADS Main window: File > Open > Example > PtolemyDocExamples >
Numeric_Control_wrk; from the Schematic window, choose File > Open,
BusSplit2_example, BusSplit3_example, BusSplit5_example, or BusSplit7_example.

204



Advanced Design System 2011.01 - Numeric Components

Chop

Description: Chop input data into blocks

Library: Numeric, Control

Class: SDFChop

C++ Code: See doc/sp_items/SDFChop.html under your installation directory.

Parameters

Name Description Default |Unit Type Range
nRead number of data items read 128 int [1, c0)
nWrite number of data items written 64 int [1, c0)
Offset start of output block relative to start of input block |0 int (-00, c0)
UsePastInputs juse previously read inputs: NO, YES YES enum

Pin Inputs

Pin /Name Description Signal Type
1 Jinput anytype
Pin Outputs

Pin Name Description |Signal Type
2 |output anytype

Notes/Equations

1. The Chop component reads a block of nRead samples from its input and produces a
block of nWrite samples at its output. Depending on the parameter settings, the
output block can have all or part of the samples in the input block, zeros could be
appended or prepended, and even samples from the previously read input blocks can
be reused.

2. The Offset parameter defines where in the output block of samples the first (oldest)
input sample is output.

o If Offset is < 0, the first |Offset| input samples are discarded and the (|Offset|
+ 1)-th input sample is output as the first output sample (the UsePastinputs
parameter is ignored)

o If Offset > 0, the first input sample is output as the (Offset + 1)-th output
sample. The first Offset output samples are:

o 0, if UsePastInputs is set to NO
o the last Offset samples from the previous blocks read, if UsePastinputs is
set to YES

3. The following tables summarize the behavior of this component.

If nRead = nWrite

205



Case |Offset

(_ ©, —
nRead]
(_
nRead,
0]

(_
nRead,
0]

o,
nWrite)
o,
nWrite)

[nWrite,
)

[nWrite,
)

Advanced Design System 2011.01 - Numeric Components

UsePastInputs nWrite <
nRead - |
Offset|

NO or YES will always
be FALSE

NO or YES TRUE

NO or YES FALSE

NO TRUE or
FALSE

YES TRUE or
FALSE

NO TRUE or
FALSE

YES TRUE or
FALSE

If nRead < nWrite

Case |Offset

10

11

12

13

14

15

UsePastInputs nRead <

nWrite — |
Offset|

(—oc0, — |NO or YES TRUE or

nRead] FALSE

(—nRead NO or YES TRUE or

, 0] FALSE

(0, NO TRUE

nWrite)

(o, NO FALSE

nWrite)

(0, YES TRUE

nWrite)

(0, YES FALSE

nWrite)

[nWrite, NO will always be

) FALSE

[nWrite, YES will always be

) FALSE

Output

all zeros

discard the first |Offset| input samples, output the next
nWrite input samples

discard the first |Offset| input samples, output the next
(nRead — |Offset|) input samples followed by (nWrite —
(nRead — |Offset|)) zeros

output Offset zeros followed by the first (nWrite — Offset
) input samples
output the last Offset samples of the previously read

input block followed by the first (nWrite — Offset) input
samples

all zeros

output from the (nRead — Offset + 1)-th to (nRead —
Offset + nWrite)-th samples of the previously read input
block (for the first block the previous block is assumed
to be all zeros)

Output

all zeros

discard the first |Offset| input samples, output the
next (nRead — |Offset|) input samples followed by (
nWrite — (nRead — |Offset|)) zeros

output Offset zeros followed by the nRead input
samples followed by (nWrite — nRead — Offset) zeros

output Offset zeros followed by the first (nWrite —
Offset) input samples

output the last Offset samples of the previously read
input block followed by the nRead input samples
followed by (nWrite — nRead — Offset) zeros

output the last Offset samples of the previously read
input block(s) followed by the first (nWrite — Offset)
input samples

all zeros

output the last nWrite samples of the previously read
input block(s) (for the first block the previous blocks
are assumed to be all zeros)

4, Here are some examples. In all of these examples the input is assumed to be a ramp
signal with initial value of 1 and step 1 (1, 2, 3, 4, 5, 6, ...).

206



Advanced Design System 2011.01 - Numeric Components

Case nRead nWrite Offset UsePastInputs |Output
1 10 5 -10 (or NO or YES 0,0,0,0,0,0, ...
smaller)
2 10 3 -5 NO or YES 6,7,8,16,17, 18, 26, 27, 28, ...
3 10 5 -7 NO or YES 8,9, 10,0,0, 18,19, 20,0, 0, 28, 29, 30,0, O, ...
4 10 5 2 NO 0,01,23,0,0,11,12,13,0,0, 21, 22, 23, ...
5 10 5 YES 0,012,309 10,11, 12,13, 19, 20, 21, 22, 23,
6 10 5 5 (or NO 0,0,0,0,0,0, ...
bigger)
7 10 5 5 YES 0,0,0,0,0,6,7,8,9, 10, 16, 16, 18, 19, 20, ...
7 10 5 7 YES 0,0,0,0,0,4,5,6,7,8, 14, 15, 16, 17, 18, ...
8 5 10 -5 (or NO or YES 0,0,0,0,0,0, ...
smaller)
9 5 10 -3 NO or YES 4,5,0,0,0,0,0,0,0,0,9,10,0,0,0,0,0,0,0,
0, 14, 15,0,0,0,0,0,0, 0,0, ...
10 5 10 3 NO 0,00123,45,0000,0,6,7,8,9, 10, 0,
0,00,0,11,12,13, 14, 15,0, 0, ...
11 5 10 7 NO o,0000001230000000,H6,7
80000000, 11,12,13, ...
12 5 10 3 YES 0,0,01,23,4,5,0,0,3,4,5,6,7,8,9, 10, 0,
o,8,9, 10,11, 12, 13, 14, 15,0, O, ...
13 5 10 7 YES o0,0,00000123,00,1,2,3,4,5,6, 7,
8,4,56,7,8,9, 10,11, 12, 13, ...
14 |5 10 10 (or NO 0,0,0,0,0,0,
bigger)
15 |3 5 5 YES 0,000000123,2,3,45,6,5,6,7,8,

9, ...

5. Common uses of the Chop component include:

Discard samples from the beginning of a block of data: Offset should be set to —N
, Where N is the number of samples that need to be discarded and nWrite should
be set to nRead — N.

Discard samples from the end of a block of data: Offset should be set to 0 and
nWrite should be set to nRead — N, where N is the number of samples that need
to be discarded.

Discard samples from both the beginning and the end of a block of data: Offset
should be set to —N ,, where N , is the number of samples that need to be

discarded from the beginning of the block and nWrite should be set to nRead —
N, — N, where N ,is the number of samples that need to be discarded from

the end of the block.

Prepend zeros to a block of data: Offset should be set to N, where N is the
number of zeros to be prepended, UsePastInputs should be set to NO, and
nWrite should be set to nRead + N.

Append zeros to a block of data: Offset should be set to 0 and nWrite should be
set to nRead + N, where N is the number of zeros to be appended.

Prepend and append zeros to a block of data: Offset should be set to N p where
N p is the number of zeros to be prepended, UsePastinputs should be set to NO,
and nWrite should be set to nRead + N pt+ N ,, where N , is the number of

zeros to be appended.
207



Advanced Design System 2011.01 - Numeric Components
 Break an input stream of samples in blocks of size N , with N j overlapping

samples: nRead should be setto N , — N ,, nWrite should be set to N ,, Offset
should be set to N ,, and UsePastInputs should be set to YES.

6. For general information regarding numeric control components, refer to Numeric
Control Components (numeric).
7. See also: ChopVarOffset (numeric).

208



Advanced Design System 2011.01 - Numeric Components

ChopVarOffset

h I.: | Ll FS

Description: Chop input data into blocks with offset control

Library: Numeric, Control

Class: SDFChopVarOffset

Derived: From Chop

C++ Code: See doc/sp_items/SDFChopVarOffset.html under your installation directory.

Parameters

Name |Description Default |Unit | Type Range
nRead number of data items read 128 int  |[1, )
nWrite |number of data items written 64 int [1, )
Pin Inputs

Pin Name Description Signal Type

1 |input anytype
2 |offsetCntrl int
Pin Outputs

Pin Name Description |Signal Type
3  |output anytype

Notes/Equations

1. ChopVarOffset has the same functionality as the Chop (numeric) component except
that the Offset parameter is determined at run time by a control input (offsetCntrl)
and the UsePastInputs parameter is assumed to be NO.

2. For general information regarding numeric control components, refer to Numeric
Control Components (numeric).

3. See also: Chop (numeric)

209



Advanced Design System 2011.01 - Numeric Components

Commutator

1 ° \ FE

Description: Synchronous Data Commutator

Library: Numeric, Control

Class: SDFCommutator

C++ Code: See doc/sp_items/SDFCommutator.html under your installation directory.

Parameters

Name Description Default |Unit Type Range
BlockSize INumber of particles in a block. |1 int  |[1, )
Pin Inputs

Pin [Name |Description Signal Type
1 |input multiple anytype
Pin Outputs

Pin [Name Description [Signal Type
2 |output anytype

Notes/Equations

© Note

Use of this component with timed signals having different characterization frequencies is not
recommended and can lead to unexpected results.

1. This component takes N input streams and synchronously combines them into one
output stream. It consumes B input data packets from each input (where B is
BlockSize), and produces N x B data packets on the output.

2. For general information regarding numeric control components, refer to Numeric
Control Components (numeric).

210



Advanced Design System 2011.01 - Numeric Components

Commutator2
2
1 ““““* p>

Description: 2-Input Synchronous Data Commutator

Library: Numeric, Control

Class: SDFCommutator

C++ Code: See doc/sp_items/SDFCommutator.html under your installation directory.

Parameters

Name Description Default |Unit Type Range
BlockSize INumber of particles in a block. |1 int  |[1, )
Pin Inputs

Pin Name |Description Signal Type

1 input#1 anytype
2  |input#2 anytype
Pin Outputs

Pin [Name Description [Signal Type
3  |output anytype

Notes/Equations

© Note
Use of this component with timed signals having different characterization frequencies is not
recommended and can lead to unexpected results.

1. This component takes 2 input streams and synchronously combines them into one
output stream. It accepts 2 single signals, both of the same type.
It consumes B input data packets from each input (where B is BlockSize), and

produces 2B data packets on the output. The first B data packets on the output come

from the first input, the next B data packets from the next input.
2. For general information regarding numeric control components, refer to Numeric
Control Components (numeric).

211



Advanced Design System 2011.01 - Numeric Components

Commutator3

2 o Nt

Description: 3-Input Synchronous Data Commutator

Library: Numeric, Control

Class: SDFCommutator

C++ Code: See doc/sp_items/SDFCommutator.html under your installation directory.

Parameters

Name Description Default |Unit Type Range
BlockSize INumber of particles in a block. |1 int  |[1, )
Pin Inputs

Pin Name |Description Signal Type

1 input#1 anytype
2  |input#2 anytype
3  |input#3 anytype
Pin Outputs

Pin [Name Description [Signal Type
4  output anytype

Notes/Equations

© Note
Use of this component with timed signals having different characterization frequencies is not
recommended and can lead to unexpected results.

1. Commutator3 takes 3 input streams and synchronously combines them into one
output stream. It accepts 3 single signals, all of the same type.
It consumes B input data packets from each input (where B is BlockSize), and
produces 3 B data packets on the output. The first B data packets on the output
come from the first input, the next B data packets from the next input, and so on.
2. For general information regarding numeric control components, refer to Numeric
Control Components (numeric).

212



Advanced Design System 2011.01 - Numeric Components

Commutator4

n\\\\v PE

@

= |2 |G |

YYVY

Description: 4-Input Synchronous Data Commutator

Library: Numeric, Control

Class: SDFCommutator

C++ Code: See doc/sp_items/SDFCommutator.html under your installation directory.

Parameters

Name Description Default Unit Type Range
BlockSize INumber of particles in a block. |1 int  |[1, )
Pin Inputs

Pin Name |Description |Signal Type

1 input#1 anytype
2  |linput#2 anytype
3  |input#3 anytype
4  |input#4 anytype
Pin Outputs

Pin [Name Description [Signal Type
5 J|output anytype

Notes/Equations

© Note
Use of this component with timed signals having different characterization frequencies is not
recommended and can lead to unexpected results.

1. Commutator4 takes 4 input streams and synchronously combines them into one
output stream. It accepts 4 single signals, all of the same type.
It consumes B input data packets from each input (where B is BlockSize), and
produces 4 B data packets on the output. The first B data packets on the output
come from the first input, the next B data packets from the next input, and so on.
2. For general information regarding numeric control components, refer to Numeric
Control Components (numeric).

213



Advanced Design System 2011.01 - Numeric Components

Delay

1 <> 2

Description: Delay Component
Library: Numeric, Control
Class: HOFDelay

Derived From: Nop

Parameters

Name Description Default Type Range
N N 1 int [0, o)
Pin Inputs

Pin |[Name |Description Signal Type
1 |input multiple anytype
Pin Outputs

Pin /Name Description Signal Type
2 |output multiple anytype

Notes/Equations

1. This component delays input tokens from output by N samples. The initial N output
tokens have a null value.

2. For timed signals, use the DelayRF component.

3. For general information regarding numeric control components, refer to Numeric
Control Components (numeric).

4, The N parameter cannot be swept.

214



Advanced Design System 2011.01 - Numeric Components

‘r$»ﬁ

Description: Data demultiplexer

Library: Numeric, Control

Class: SDFDeMux

C++ Code: See doc/sp_items/SDFDeMux.html under your installation directory.

Parameters

Name Description Default Unit Type Range
BlockSize lnumber of data items in a block |1 int [1, o0)
Pin Inputs

Pin [Name Description Signal Type

1 input anytype
2 |control int
Pin Outputs

Pin [Name Description [Signal Type
3  |output multiple anytype

Notes/Equations

1. DeMux demultiplexes one input onto any number of output streams. DeMux
consumes B packets of data from the input, where B is the BlockSize. These B data
packets are copied to exactly one output, determined by the control input. The other
outputs get a zero of the appropriate type.

2. Integers 0 through N - 1 are accepted at the control input, where N is the number of
outputs. If the control input is outside this range, all outputs get zero.

3. For general information regarding numeric control components, refer to Numeric
Control Components (numeric).

215



Advanced Design System 2011.01 - Numeric Components

DeMux2

1 ol —pt
P‘% €

Description: 2-Output Data Demultiplexer

Library: Numeric, Control

Class: SDFDeMux

C++ Code: See doc/sp_items/SDFDeMux.html under your installation directory.

Parameters

Name Description Default Unit Type Range
BlockSize lnumber of data items in a block |1 int [1, o)
Pin Inputs

Pin [Name Description Signal Type

1 input anytype
2 |control int
Pin Outputs

Pin Name Description Signal Type
3  |output#1 anytype
4  |output#2 anytype

Notes/Equations

1. DeMux2 directs one input to either of two outputs based on the logic state (0 or 1) of
the control input. DeMux2 produces 2 single signal outputs, all of the same type as
the input.

2. For general information regarding numeric control components, refer to Numeric
Control Components (numeric).

216



Advanced Design System 2011.01 - Numeric Components

Distributor

1 \2 pp->

Description: Synchronous Data Distributor

Library: Numeric, Control

Class: SDFDistributor

C++ Code: See doc/sp_items/SDFDistributor.htm/ under your installation directory.

Parameters

Name Description Default |Unit Type Range
BlockSize INumber of particles in a block. |1 int  |[1, )
Pin Inputs

Pin [Name |Description Signal Type
1 |input anytype
Pin Outputs

Pin [Name Description [Signal Type
2 |output multiple anytype

Notes/Equations

1. Distributor synchronously splits one input stream into N output streams. It consumes
N x B input particles (where B = BlockSize) and sends the first B particles to the first
output, the next B particles to the next output, and so on. It produces a single signal
output of the same type as input.

The number of output streams, N, is equal to the number of other component input
pins connected to the Distributor output pin. For an ordered distribution of output
streams to input pins, a BusSplit[2, ... , 9] component can be connected to the
Distributor output pin and other component input pins connected to the BusSplit[2,
... , 9] component output pins.

2. For general information regarding numeric control components, refer to Numeric
Control Components (numeric).

217



Advanced Design System 2011.01 - Numeric Components

Distributor2

1 I;
~_

L]

Description: 2-Output Synchronous Data Distributor

Library: Numeric, Control

Class: SDFDistributor

C++ Code: See doc/sp_items/SDFDistributor.htm/ under your installation directory.

Parameters

Name Description Default |Unit Type Range
BlockSize INumber of particles in a block. |1 int  |[1, )
Pin Inputs

Pin [Name |Description Signal Type
1 |input anytype
Pin Outputs

Pin Name Description Signal Type
2 |output#1 anytype
3  |output#2 anytype

Notes/Equations

1. Distributor2 synchronously splits one input stream into 2 output streams. It
consumes 2 x B input particles (where B = BlockSize) and sends the first B particles
to the first output and the next B particles to the second output. It produces 2 single
signal outputs, both of the same type as the input.

2. For general information regarding numeric control components, refer to Numeric
Control Components (numeric).

218



Advanced Design System 2011.01 - Numeric Components

Distributor3

Description: 3-Output Synchronous Data Distributor

Library: Numeric, Control

Class: SDFDistributor

C++ Code: See doc/sp_items/SDFDistributor.htm/ under your installation directory.

Parameters

Name Description Default |Unit Type Range
BlockSize INumber of particles in a block. |1 int  |[1, )
Pin Inputs

Pin [Name |Description Signal Type
1 |input anytype
Pin Outputs

Pin Name Description Signal Type

2 |output#1 anytype
3  |output#2 anytype
4  |output#3 anytype

Notes/Equations

1. Distributor3 synchronously splits one input stream into 3 output streams. It
consumes 3 x B input particles (where B = BlockSize) and sends the first B particles
to the first output, the second B particles to the second output, and the third B
particles to the third output. It produces 3 single signal outputs, all of the same type
as the input.

2. For general information regarding numeric control components, refer to Numeric
Control Components (numeric).

219



Advanced Design System 2011.01 - Numeric Components

Distributor4

: 5

1 e h‘i

P x\ P:
3

Description: 4-Output Synchronous Data Distributor

Library: Numeric, Control

Class: SDFDistributor

C++ Code: See doc/sp_items/SDFDistributor.htm/ under your installation directory.

Parameters

Name Description Default Unit Type Range
BlockSize INumber of particles in a block. |1 int [1, o)
Pin Inputs

Pin [Name Description Signal Type
1 |input anytype
Pin Outputs

Pin Name Description Signal Type

2 |output#1 anytype
3 |output#2 anytype
4  |output#3 anytype
5 |output#4 anytype

Notes/Equations

1. Distributor4 synchronously splits one input into 4 output streams. It consumes 4 x B
input particles (where B = BlockSize) and sends the first B particles to the first
output, the second B particles to the second output, the third B particles to the third
output, and the fourth B particles to the fourth output. It produces 4 single signal
outputs, all of the same type as the input.

2. For general information regarding numeric control components, refer to Numeric
Control Components (numeric).

220



Advanced Design System 2011.01 - Numeric Components

DownSample

1 J ."2

Description: Data Down Sampler

Library: Numeric, Control

Class: SDFDownSample

C++ Code: See doc/sp_items/SDFDownSample.htm/ under your installation directory.

Parameters

Name Description Default Unit Type Range
Factor [downsample factor |2 int [1, o)
Phase |downsample phase |0 int [0,Factor-1]
Pin Inputs

Pin [Name |Description Signal Type
1 |input anytype
Pin Outputs

Pin [Name Description [Signal Type
2 |output anytype

Notes/Equations

1. Down-sampling is also referred to as decimation. This component reduces the
sampling rate of its input signal by an integer Factor ratio. Decimation is performed
by keeping one sample at the output for every Factor samples at the input.

2. This component does not have a built-in lowpass filter before decimation. To avoid
aliasing, it may be necessary for the designer to ensure that the input signal
bandwidth is appropriately limited by connecting a lowpass filter at the input.

3. Phase tells which sample to output: if Phase = 0, the most recent sample is the
output; if Phase=Factor — 1 the oldest sample is the output. y[n] = x[Factor x (n +
1) — (Phase — 1)], where n is the output sample number, y is the output, and x is
the input. (Note that phase has the opposite sense of the Phase parameter in the
UpSample component, but the same sense as the Phase parameter in the FIR
component.)

4, For timed signals, use the DSampleRF (timed) component.

5. For general information regarding numeric control components, refer to Numeric
Control Components (numeric).

221



Advanced Design System 2011.01 - Numeric Components

DSampleWOffset

Dawn

'] ' Sample ' 3

ith Dielay

Description: Down sample with detected delay
Library: Numeric, Control
Class: SDFDSampleWOffset

Parameters

Name Description Default |Unit Type Range
SampPerChip [Number of samples fer chip |8 int [1, )
Pin Inputs

Pin [Name |Description Signal Type

1 |Input |Input anytype
2 |Offset |Offset int
Pin Outputs

Pin Name |Description Signal Type

3

Output |Output anytype

Notes/Equations

1.

3.

This model downsamples RF received data using RF channel delay information. The
first input is the complex envelope data that will be downsampled; the second input
is the RF channel delay detected by DelayEstimator. The downsampled complex
envelope signal is output.

The schematic for this subnetwork is shown in DSampleWOffset Schematic. Two
Delay models are inserted in the subnet based on the RF feedback loop regirement.
The C++ model DSWOffset performs the downsample for the signal with an arbitrary
delay.

. This is a multirate component.

If SampPerChip > 1, the component downsamples the signal with RF channel delay
using SampPerChip as the downsample ratio.

If SampPerChip = 1, the input signal is passed to the output with a delay and
downsampling is not performed.

To downsample an RX signal with an arbitrary delay through an RF path, component
sampling time is synchronized with the delayed TX signal start time.

DSampleWOffset Schematic

222



Advanced Design System 2011.01 - Numeric Components

C>—><>

Port

Delay

OO .<>..S§'n’;.=.D

Port VAR betay Port

Delay DEWOffaet

E WAR

References

1. M. Jeruchim, P. Balaban and K. Shanmugan, "Simulation of Communication System,"
Plenum Press, New York and London, 1992.

223



Advanced Design System 2011.01 - Numeric Components

EnableUDSample

ISR

Description: Data Up/Down Sampler
Library: Numeric, Control
Class: SDFEnableUDSample

Parameters

Name |Description Default Unit Type Range
Enable |enable the up/down sampling: NO, YES |INO enum
USample |lupsample ratio 1 int [1, c0)
DSample downsample ratio 1 int [1, )
Pin Inputs

Pin [Name |Description Signal Type
1 |input |input signal |anytype
Pin Outputs

Pin [Name Description Signal Type
2 |output |output signal |anytype

Notes/Equations

1. EnableUDSample can be used to resample the input signal at a new rate. Resampling
occurs only when the Enable parameter is set to YES.

2. When USample is greater than 1 upsampling will occur. Upsampling is done as
sample and hold (repeat input sample USample times).
When DSample is greater than 1 downsampling will occur. The downsampling phase
is DSample-1, that is, the first out of every DSample samples is selected and the
subsequent DSample-1 samples are discarded.
If USample is smaller than DSample loss of information may occur.

3. For general information regarding numeric control components, refer to Numeric
Control Components (numeric).

224



Advanced Design System 2011.01 - Numeric Components

Description: Copy input particles to each output.
Library: Numeric, Control

Class: HOFFork

Derived From: Base

Pin Inputs

Pin [Name Description Signal Type
1 input anytype
Pin Outputs

Pin [Name Description [Signal Type
2 |output multiple anytype

Notes/Equations

1. Fork is generally used to explicitly connect a single output port of a component to

multiple input ports of other components. Fork cannot be used to connect a multi-
port output of a component to multiple multi-port inputs of other components. For
example, the input of the Fork component cannot be connected to a bus of width >
1.
. In many data flow graphs, the explicit use of this component is optional. If not used,
it will be automatically inserted when multiple inputs are connected to the same
output in a schematic.
Automatically inserted Fork components are not always desirable:
« When multi-port inputs or outputs are used, auto-forking can cause problems-
for example, two outputs and several inputs on the same net.
« When there is a delay on one of the arcs, Fork must be explicitly inserted by the
designer to avoid ambiguity about the location of the delay.
. Fork is typically used with numeric signals; one or more SplitterRF components
should be used with timed signals.
When a Fork is forced to connect with a timed signal, it assumes infinite equivalent
input resistance and zero equivalent output resistance.
. For general information regarding numeric control components, refer to Numeric
Control Components (numeric).

225



Advanced Design System 2011.01 - Numeric Components

Fork2

3
_<:2

Description: Copy input particles to each output.
Library: Numeric, Control
Class: HOFFork

Pin Inputs

Pin Name Description Signal Type

1

input anytype

Pin Outputs

Pin Name Description Signal Type

2
3

output#1 anytype
output#2 anytype

Notes/Equations

1.

Fork2 is generally used to explicitly connect a single output port of a component to
multiple input ports of other components. Fork2 cannot be used to connect a muilti-
port output of a component to multiple multi-port inputs of other components. For
example, the input of the Fork2 component cannot be connected to a bus of width >
1.
In many data flow graphs, the explicit use of this component is optional. If not used,
it will be automatically inserted when multiple inputs are connected to the same
output in a schematic.
Automatically inserted Fork2 components are not always desirable:

« When multi-port inputs or outputs are used, auto-forking can cause problems-

for example, two outputs and several inputs on the same net.
« When there is a delay on one of the arcs, Fork2 must be explicitly inserted by
the designer to avoid ambiguity about the location of the delay.

Fork2 connects a single output port of a component to 2 input ports of other
components. It has 2 single output ports rather than one multi-port output.
Fork2 is typically used with numeric signals; SplitterRF should be used with timed
signals.
When Fork?2 is forced to connect with a timed signal, it assumes infinite equivalent
input resistance and zero equivalent output resistance.
For general information regarding numeric control components, refer to Numeric
Control Components (numeric).

226



Advanced Design System 2011.01 - Numeric Components

Fork3
h'4
Cpd
N

Description: Copy input particles to each output.
Library: Numeric, Control
Class: HOFFork

Pin Inputs

Pin Name Description Signal Type

1

input anytype

Pin Outputs

Pin Name Description Signal Type

2
3
4

output#1 anytype
output#2 anytype
output#3 anytype

Notes/Equations

1.

Fork3 is generally used to explicitly connect a single output port of a component to
multiple input ports of other components. Fork3 cannot be used to connect a multi-
port output of a component to multiple multi-port inputs of other components. For
example, the input of the Fork3 component cannot be connected to a bus of width >
1.
In many data flow graphs, the explicit use of this component is optional. If not used,
it will be automatically inserted when multiple inputs are connected to the same
output in a schematic.
Automatically inserted Fork3 components are not always desirable:

« When multi-port inputs or outputs are used, auto-forking can cause problems-

for example, two outputs and several inputs on the same net.
« When there is a delay on one of the arcs, Fork3 must be explicitly inserted by
the designer to avoid ambiguity about the location of the delay.

Fork3 connects a single output port of a component to 3 input ports of other
components. It has 3 single output ports rather than one multi-port output.
Fork3 is typically used with numeric signals; SplitterRF components should be used
with timed signals.
When Fork3 is forced to connect with a timed signal, it assumes infinite equivalent
input resistance and zero equivalent output resistance.
For general information regarding numeric control components, refer to Numeric
Control Components (numeric).

227



Advanced Design System 2011.01 - Numeric Components

Fork4

5
F:i
3

/
1 :

P —% Fz
M o

Description: Copy input particles to each output.
Library: Numeric, Control
Class: HOFFork

Pin Inputs

Pin /Name Description Signal Type

1

input anytype

Pin Outputs

Pin Name Description |Signal Type

2

3
4
5

output#1 anytype
output#2 anytype
output#3 anytype
output#4 anytype

Notes/Equations

1.

Fork4 is generally used to explicitly connect a single output port of a component to
multiple input ports of other components. Fork4 cannot be used to connect a muilti-
port output of a component to multiple multi-port inputs of other components. For
example, the input of the Fork4 component cannot be connected to a bus of width >
1.
In many data flow graphs, the explicit use of this component is optional. If not used,
it will be automatically inserted when multiple inputs are connected to the same
output in a schematic.
Automatically inserted Fork4 components are not always desirable:

« When multi-port inputs or outputs are used, auto-forking can cause problems-

for example, two outputs and several inputs on the same net.
« When there is a delay on one of the arcs, Fork4 must be explicitly inserted by
the designer to avoid ambiguity about the location of the delay.

Fork4 connects a single output port of a component to 4 input ports of other
components. It has 4 single output ports rather than one multi-port output.
Fork4 is typically used with numeric signals; SplitterRF components should be used
with timed signals.
When Fork4 is forced to connect with a timed signal, it assumes infinite equivalent
input resistance and zero equivalent output resistance.
For general information regarding numeric control components, refer to Numeric
Control Components (numeric).

228



Advanced Design System 2011.01 - Numeric Components

229



Advanced Design System 2011.01 - Numeric Components

Fork5

[ T #L e

h 4
YYYYY

Description: Copy input particles to each output.
Library: Numeric, Control
Class: HOFFork

Pin Inputs

Pin /Name Description Signal Type

1

input anytype

Pin Outputs

Pin Name Description |Signal Type

2

[ ) IEN O, I SR OV}

output#1 anytype
output#2 anytype
output#3 anytype
output#4 anytype
output#5 anytype

Notes/Equations

1.

Fork5 is generally used to explicitly connect a single output port of a component to
multiple input ports of other components. Fork5 cannot be used to connect a muilti-
port output of a component to multiple multi-port inputs of other components. For
example, the input of the Fork5 component cannot be connected to a bus of width >
1.
In many data flow graphs, the explicit use of this component is optional. If not used,
it will be automatically inserted when multiple inputs are connected to the same
output in a schematic.
Automatically inserted Fork5 components are not always desirable:

« When multi-port inputs or outputs are used, auto-forking can cause problems-

for example, two outputs and several inputs on the same net.
« When there is a delay on one of the arcs, Fork5 must be explicitly inserted by
the designer to avoid ambiguity about the location of the delay.

Fork5 connects a single output port of a component to 5 input ports of other
components. It has 5 single output ports rather than one multi-port output.
Fork5 is typically used with numeric signals; SplitterRF components should be used
with timed signals.
When Fork5 is forced to connect with a timed signal, it assumes infinite equivalent
input resistance and zero equivalent output resistance.
For general information regarding numeric control components, refer to Numeric
Control Components (numeric).

230



Advanced Design System 2011.01 - Numeric Components

231



Advanced Design System 2011.01 - Numeric Components

Fork6
<
1
%
ANES
% ’..!

Description: Copy input particles to each output.
Library: Numeric, Control
Class: HOFFork

Pin Inputs

Pin /Name Description Signal Type

1

input anytype

Pin Outputs

Pin Name Description |Signal Type

N ounn|h~h|lw|(N

output#1 anytype
output#2 anytype
output#3 anytype
output#4 anytype
output#5 anytype
output#6 anytype

Notes/Equations

1.

Fork6 is generally used to explicitly connect a single output port of a component to
multiple input ports of other components. Fork6 cannot be used to connect a muilti-
port output of a component to multiple multi-port inputs of other components. For
example, the input of the Fork6 component cannot be connected to a bus of width >
1.
In many data flow graphs, the explicit use of this component is optional. If not used,
it will be automatically inserted when multiple inputs are connected to the same
output in a schematic.
Automatically inserted Fork6 components are not always desirable:

« When multi-port inputs or outputs are used, auto-forking can cause problems-

for example, two outputs and several inputs on the same net.
« When there is a delay on one of the arcs, Fork6é must be explicitly inserted by
the designer to avoid ambiguity about the location of the delay.

Fork6 connects a single output port of a component to 6 input ports of other
components. It has 6 single output ports rather than one multi-port output.
Fork6 is typically used with numeric signals; SplitterRF components should be used
with timed signals.
When Fork®6 is forced to connect with a timed signal, it assumes infinite equivalent
input resistance and zero equivalent output resistance.
For general information regarding numeric control components, refer to Numeric

232



Advanced Design System 2011.01 - Numeric Components
Control Components (numeric).

233



Advanced Design System 2011.01 - Numeric Components

Fork?7
e
Il
R RYES
| S<

Description: Copy input particles to each output.
Library: Numeric, Control
Class: HOFFork

Pin Inputs

Pin /Name Description Signal Type

1

input anytype

Pin Outputs

Pin Name Description |Signal Type

O N OO U ~WN

output#1 anytype
output#2 anytype
output#3 anytype
output#4 anytype
output#5 anytype
output#6 anytype
output#7 anytype

Notes/Equations

1. Fork7 is generally used to explicitly connect a single output port of a component to

multiple input ports of other components. Fork7 cannot be used to connect a multi-
port output of a component to multiple multi-port inputs of other components. For
example, the input of the Fork7 component cannot be connected to a bus of width >
1

. In many data flow graphs, the explicit use of this component is optional. If not used,

it will be automatically inserted when multiple inputs are connected to the same
output in a schematic.
Automatically inserted Fork7 components are not always desirable:
« When multi-port inputs or outputs are used, auto-forking can cause problems-
for example, two outputs and several inputs on the same net.
« When there is a delay on one of the arcs, Fork7 must be explicitly inserted by
the designer to avoid ambiguity about the location of the delay.

. Fork7 connects a single output port of a component to 7 input ports of other

components. It has 7 single output ports rather than one multi-port output.

. Fork7 is typically used with numeric signals; SplitterRF components should be used

with timed signals.
When Fork7 is forced to connect with a timed signal, it assumes infinite equivalent
input resistance and zero equivalent output resistance.

234



Advanced Design System 2011.01 - Numeric Components
5. For general information regarding numeric control components, refer to Numeric
Control Components (numeric).

235



Advanced Design System 2011.01 - Numeric Components

Fork8
1
I 4
Ly —% ::
N -
W }3
|y

Description: Copy input particles to each output.
Library: Numeric, Control
Class: HOFFork

Pin Inputs

Pin /Name Description Signal Type

1

input anytype

Pin Outputs

Pin Name Description |Signal Type

O O/ NO U I WN

output#1 anytype
output#2 anytype
output#3 anytype
output#4 anytype
output#5 anytype
output#6 anytype
output#7 anytype
output#8 anytype

Notes/Equations

1. Fork8 is generally used to explicitly connect a single output port of a component to

multiple input ports of other components. Fork8 cannot be used to connect a multi-
port output of a component to multiple multi-port inputs of other components. For
example, the input of the Fork8 component cannot be connected to a bus of width >
1

. In many data flow graphs, the explicit use of this component is optional. If not used,

it will be automatically inserted when multiple inputs are connected to the same
output in a schematic.
Automatically inserted Fork8 components are not always desirable:
« When multi-port inputs or outputs are used, auto-forking can cause problems-
for example, two outputs and several inputs on the same net.
« When there is a delay on one of the arcs, Fork8 must be explicitly inserted by
the designer to avoid ambiguity about the location of the delay.

. Fork8 connects a single output port of a component to 8 input ports of other

components. It has 8 single output ports rather than one multi-port output.

. Fork8 is typically used with numeric signals; SplitterRF components should be used

with timed signals.
When Fork8 is forced to connect with a timed signal, it assumes infinite equivalent

236



Advanced Design System 2011.01 - Numeric Components
input resistance and zero equivalent output resistance.
5. For general information regarding numeric control components, refer to Numeric
Control Components (numeric).

237



Advanced Design System 2011.01 - Numeric Components

Fork9

Description: Copy input particles to each output.
Library: Numeric, Control
Class: HOFFork

Pin Inputs

Pin /Name Description Signal Type

1

input anytype

Pin Outputs

Pin Name Description |Signal Type

O O/ NO U I WN

[E
o

output#1 anytype
output#2 anytype
output#3 anytype
output#4 anytype
output#5 anytype
output#6 anytype
output#7 anytype
output#8 anytype
output#9 anytype

Notes/Equations

1. Fork9 is generally used to explicitly connect a single output port of a component to

multiple input ports of other components. Fork9 cannot be used to connect a muilti-
port output of a component to multiple multi-port inputs of other components. For
example, the input of the Fork9 component cannot be connected to a bus of width >
1.
In many data flow graphs, the explicit use of this component is optional. If not used,
it will be automatically inserted when multiple inputs are connected to the same
output in a schematic.
Automatically inserted Fork9 components are not always desirable:
« When multi-port inputs or outputs are used, auto-forking can cause problems-
for example, two outputs and several inputs on the same net.
« When there is a delay on one of the arcs, Fork9 must be explicitly inserted by
the designer to avoid ambiguity about the location of the delay.
Fork9 connects a single output port of a component to 9 input ports of other
components. It has 9 single output ports rather than one multi-port output.
Fork9 is typically used with numeric signals; SplitterRF components should be used
with timed signals.
238



Advanced Design System 2011.01 - Numeric Components
When Fork9 is forced to connect with a timed signal, it assumes infinite equivalent
input resistance and zero equivalent output resistance.

5. For general information regarding numeric control components, refer to Numeric
Control Components (numeric).

239



Advanced Design System 2011.01 - Numeric Components

IfElse

(X}

g P

Talse

Description: Map one of two blocks
Library: Numeric, Control

Class: HOFIfElse

Derived From: Map

Parameters
Name Description Default Type Range
Condition Select 'False' or 'True' path based on the Condition: False, True enum False or True
True
Pin Inputs
Pin Name Description Signal Type
1 |input Input to the IfElse component multiple
anytype
2 |true_mapoutput |Connect to the output pin, if any, of the design path that will be selected multiple
if Condition evaluates to TRUE anytype
3 [false_mapoutput Connect to the output pin, if any, of the design path that will be selected multiple
if Condition evaluates to FALSE anytype
Pin Outputs
Pin Name Description Signal Type
4  true_mapinput |Connect to the input pin, if any, of the design path that will be selected if |multiple
Condition evaluates to TRUE anytype
5 |output Output from the IfElse component multiple
anytype
6 |false_mapinput|Connect to the input pin, if any, of the design path that will be selected if |multiple
Condition evaluates to FALSE anytype

Notes/Equations

1. IfElse can be used to select one of the two components, the one in the true path or
the one in the false path, and insert it in the signal flow path. If more than one
component need to be connected to the true/false path these must be placed in a
subnetwork and the subnetwork connected to the path.

The Condition parameter determines which path will be selected. If Condition is set to
False, then the false path is selected; if Condition is set to True, then the true path is
selected; if Condition is set to a variable or expression, the variable or expression
must have a value of 0 or 1 (0 is treated as False and 1 is treated as True). Other
values will result in a simulation error.

2. IfElse is similar to the Mux2 component with some differences as well as advantages

240



Advanced Design System 2011.01 - Numeric Components

and disadvantages. Equivalent Schematics Using IfElse and Mux2 shows how IfElse
and Mux2 can be used to generate equivalent schematics; these schematics will
produce identical results assuming Condition is 0 or 1.

The important difference between IfElse and Mux2 is that IfElse operates at the
graph level (which means that the component not selected by IfElse is completely
removed from the graph before the simulation starts), whereas Mux2 operates at the
signal level (which means that both input signals of Mux2 must be generated, then
Mux2 selects one of them).

The advantage of operating at the graph level is that because one of the two
components connected to the true or false path of IfElse is completely removed from
the graph, only the selected one is simulated thus saving computing resources. On
the other hand, the advantage of Mux2 is that the control signal that selects which of
the two input signals will be selected can change during the simulation. In fact, this
(a varying control signal) is the most typical use of Mux2. Having a constant control
signal, as shown in Equivalent Schematics Using IfElse and Mux2, is not a typical use
of Mux2 (the purpose of the example in Equivalent Schematics Using IfElse and Mux2

is to help explain similarities/differences between IfElse and Mux2 and not to provide
a typical example for Mux2).

Another difference between the two schematics in Equivalent Schematics Using IfElse
and Mux?2 is that the Condition parameter of IfElse is hot sweepable, whereas the
Level parameter of the ConstIint component (although constant during the
simulation) is sweepable.

Equivalent Schematics Using IfElse and Mux2

241



Advanced Design System 2011.01 - Numeric Components

BlockC
Wz

- -5
Blac:h A IfBse BlockD
EA bl e
Condition=Cond
Black B
E]
=]
Conpl
"y
Block© Const Int
v 1
Lewvel=Cond
o N e I« o pad o b
Block Fork2 _.L. hux2 BlackD
Hl Fi il ) b
BlockB Block Size=1
X3

3. Although the Condition parameter of IfElse cannot be swept, the parameters of the
components in the true or false path can be swept; for this, the expressions setting
the values of these parameters must be enclosed in double quotes. For example, if a
Repeat component is connected to the true or false path of IfElse and there is a
swept variable called Rate, in order to use this variable to set the NumTimes
parameter of Repeat the assignment should be done as NumTimes = "Rate" or
NumTimes = "3 x Rate + 1".

If more complicated expressions using functions such as sin(), log(), or sqrt() need to
be used, then an intermediate variable must be defined. For the example described
above, in order to set NumTimes to int( sqrt(Rate) + 3 x log(Rate) ) an intermediate
variable (RepeatFactor for example) must be defined in a VAR block as RepeatFactor
= int( sqrt(Rate) + 3 x log(Rate) ). Then the NumTimes parameter of Repeat must
be set as NumTimes = "RepeatFactor".

The above examples are exceptions to how expressions using swept variables are
used to assign values to component parameters. These exceptions apply only to the
parameters of the components connected to the true or false paths of IfElse.

4, IfElse is intended for use with numeric components. Timed components can be
connected to the true or false path of IfElse but any series or shunt resistors
connected outside IfElse that could form resistor networks with the resistors inside
the timed components will not be correctly evaluated.

Connecting Analog/RF subnetworks to the true or false path of IfElse is not
supported. The simulator will not error out but the results of the simulation are not
guaranteed to be correct.

5. To access examples that show how this component is used: from the Main window,
choose File > Open > Example > PtolemyDocExamples > Numeric_Control_wrk;
from the Schematic window, choose File > Open, IfElse_Examplel, IfElse_ExampleZ2,

242



Advanced Design System 2011.01 - Numeric Components
or IfElse_Example3. More examples showing the usage of IfElse are the Bits and the
TkConstellation subnetworks (place these components in a schematic window and
push into them).

. For general information regarding numeric control components, refer to Numeric
Control Components (numeric).

243



Advanced Design System 2011.01 - Numeric Components

InitDelay

1 <> >

Description: Initial Delay Component
Library: Numeric, Control

Class: HOFInitDelay

Derived From: Delay

Parameters

Name Description Default Type Range
N N 1 int [0, o)
InitialDelays |StringArray containing a list of intial delay tokens. |0 string array

Pin Inputs

Pin [Name |Description Signal Type
1 |input multiple anytype
Pin Outputs

Pin [Name Description [Signal Type
2 |output multiple anytype

Notes/Equations

1. InitDelay delays input tokens from output by N sets of initial delay tokens.

2. For general information regarding numeric control components, refer to Numeric
Control Components (numeric).

3. The N parameter cannot be swept.

244



Advanced Design System 2011.01 - Numeric Components

Mux

z“$ -

Description: Data multiplexer

Library: Numeric, Control

Class: SDFMux

C++ Code: See doc/sp_items/SDFMux.htm/ under your installation directory.

Parameters

Name Description Default Unit Type Range
BlockSize lnumber of data items in a block |1 int [1, o0)
Pin Inputs

Pin [Name Description Signal Type

1 |control int
2 Jinput multiple anytype
Pin Outputs

Pin [Name Description [Signal Type
3 |output anytype

Notes/Equations

© Note
Use of this component with timed signals having different characterization frequencies is not
recommended and can lead to unexpected results.

1. Mux multiplexes any number of inputs onto one output stream. At each firing,
BlockSize data packets are consumed on each input, but only one of these blocks of
data is copied to the output, as determined by the control input. Integers from 0
through N - 1 are accepted at the control input, where N is the humber of inputs. If
the control input is outside this range, an error is signaled.

Use of a BusMerge component at input 2 of the Mux is recommended to ensure that
the order of inputs is not ambiguous. When a BusMerge component is used, control
inputs 0 through N-1 select inputs at pin 1 through N of the BusMerge, respectively.

2. For general information regarding numeric control components, refer to Numeric
Control Components (numeric).

245



Advanced Design System 2011.01 - Numeric Components

Mux2

ha |G

P ) 4
F:% >

Description: 2-Input Data Multiplexer

Library: Numeric, Control

Class: SDFMux

C++ Code: See doc/sp_items/SDFMux.htm/ under your installation directory.

Parameters

Name Description Default Unit Type Range
BlockSize lnumber of data items in a block |1 int [1, o)
Pin Inputs

Pin Name |Description |Signal Type

1 |control int

2 |input#1 anytype
3  |input#2 anytype
Pin Outputs

Pin [Name Description [Signal Type
4  |output anytype

Notes/Equations

© Note
Use of this component with timed signals having different characterization frequencies is not
recommended and can lead to unexpected results.

1. Mux2 multiplexes 2 inputs onto one output stream. At each firing, BlockSize data
packets are consumed on each single signal input pin. Only one of these blocks of
data is copied to the output; the one copied is determined by the control input.
Integers 0 to 1 are accepted at the control input; 0 selects the input at pin 2; 1
selects the input at pin 3.

2. For general information regarding numeric control components, refer to Numeric
Control Components (numeric).

246



Advanced Design System 2011.01 - Numeric Components

Repeat

Repeat Fz

Description: Data repeater

Library: Numeric, Control

Class: SDFRepeat

C++ Code: See doc/sp_items/SDFRepeat.htm/ under your installation directory.

Parameters

Name Description Default Unit Type Range
NumTimes |repetition factor 2 int [1, )
BlockSize number of data items in a block |1 int [1, )
Pin Inputs

Pin [Name |Description Signal Type
1 |input anytype
Pin Outputs

Pin [Name Description [Signal Type
2 |output anytype

Notes/Equations

1. Repeat repeats each input data packet the specified humber of times (NumTimes) on
the output. Note that this is a sample rate change, and therefore affects the number
of invocations of downstream components.

2. For general information regarding numeric control components, refer to Numeric
Control Components (numeric).

247



Advanced Design System 2011.01 - Numeric Components

Reverse

Description: Data reverser

Library: Numeric, Control

Class: SDFReverse

C++ Code: See doc/sp_items/SDFReverse.htm/ under your installation directory.

Parameters

Name Description Default Unit Type Range
N number of data items read and written |64 int [1, o0)
Pin Inputs

Pin [Name |Description Signal Type
1 |input anytype
Pin Outputs

Pin [Name Description [Signal Type
2 |output anytype

Notes/Equations

1. On each execution, Reverse reads a block of N samples and writes the samples
backwards.

2. For general information regarding numeric control components, refer to Numeric
Control Components (numeric).

248



Advanced Design System 2011.01 - Numeric Components

Trainer

S

Description: Initial Sample Trainer

Library: Numeric, Control

Class: SDFTrainer

C++ Code: See doc/sp_items/SDFTrainer.htm/ under your installation directory.

Parameters

Name Description Default Unit Type Range
TrainLength \/number of training samples to use |[100 int [0, o0)
Pin Inputs

Pin [Name |Description Signal Type

1 [train anytype
2 |decision anytype
Pin Outputs

Pin [Name Description [Signal Type
3  |output anytype

Notes/Equations

© Note
Use of this component with timed signals having different characterization frequencies is not
recommended and can lead to unexpected results.

1. Trainer passes the value of the train input to the output for the first TrainLength
samples, then passes the decision input to the output. This component is designed
for use with adaptive equalizers that require a training sequence at startup, but it can
be used whenever one sequence is used during a startup phase, and another
sequence after that.

2. During the startup phase, the decision inputs are discarded. After the startup phase,
the train inputs are discarded.

3. For general information regarding numeric control components, refer to Numeric
Control Components (numeric).

249




Advanced Design System 2011.01 - Numeric Components

Transpose

1 / >

Description: Data transposer

Library: Numeric, Control

Class: SDFTranspose

C++ Code: See doc/sp_items/SDFTranspose.html under your installation directory.

Parameters

Name Description Default Unit Type Range
SamplesInaRow number of input samples constituting a row |8 int [1, c0)
NumberOfRows \number of rows in the input matrix 8 int [1, c0)
Pin Inputs

Pin [Name |Description Signal Type
1 |input anytype
Pin Outputs

Pin [Name Description [Signal Type
2 |output anytype

Notes/Equations

1. Transpose transposes a rasterized matrix (one that is read as a sequence of data
items, row by row, and written in the same form). The number of data items
produced and consumed equals the product of SamplesIinaRow and NumberOfRows.

2. For general information regarding numeric control components, refer to Numeric
Control Components (numeric).

250



Advanced Design System 2011.01 - Numeric Components

UpSample

1 1 »2

Description: Data Up Sampler

Library: Numeric, Control

Class: SDFUpSample

C++ Code: See doc/sp_items/SDFUpSample.html under your installation directory.

Parameters

Name Description Default |Unit Type Range
Factor (number of samples produced 2 int [1, o)
Phase |where to put the input in the output block |0 int [0, Factor-1]
Fill value to fill the output block 0.0 real |(-co0, o)

Pin Inputs

Pin [Name |Description Signal Type
1 |input anytype
Pin Outputs

Pin [Name Description [Signal Type
2 |output anytype

Notes/Equations

1. The Upsample component upsamples by a given Factor, giving inserted samples the
value Fill. The Phase parameter tells where to put the sample in an output block. A
Phase of 0 indicates to output the input sample first followed by the inserted
samples. The maximum Phase is Factor — 1. y[Factor x n] = x[n + Phase], where n
is the input sample number, y is the output, x is the input.

2. Although the Fill parameter is a floating-point (real) number, if the input is of some
other type, such as complex, then Fill data will be obtained by casting Fill to the
appropriate type.

3. For timed signals, use the USampleRF component.

The USampleRF component has options for specifying how the inserted values will be
generated: SampleAndHold, Zerolnsertion, PolyPhaseFilter, Linear.

The UpSample component implements the Zerolnsertion option only, assuming Fill is
set to 0. While UpSample cannot implement other USampleRF options, other
components in the Numeric library can be used to implement them.

« The SampleAndHold option can be implemented by the Repeat component. The
NumTimes parameter of the Repeat component should be set to the upsampling
factor and the BlockSize parameter should be set to 1. Equivalence of Repeat
and SampleAndHold Option of USampleRF shows how to set the Repeat and the
USampleRF components to get equivalent results.

251




Advanced Design System 2011.01 - Numeric Components

Equivalence of Repeat and SampleAndHold Option of USampleRF

InsertionPhase and
] var ExcessBWY are ignored
AR when Type is set to
UpSamplingF actar =6 SampleAndHald

F
—J] Rapaal |—Jte ! ]:* -

Repeat USampleRF

R L1

MumTimes=pSamplingFactor Type=SamplesndHold

BlockSize=1 Ratio=UpSamplingFactor
InzetionPhase=0
ExcessBW=05

o The PolyPhaseFilter option can be implemented by the RaisedCosine component.
Parameters of the RaisedCosine component should be set as follows: Decimation
= 1, DecimationPhase = 0, Interpolation = N, Length = 20 x N, SymbolInterval
= N, ExcessBW = a, and SquareRoot = 0 (where N is the USampleRF Ratio
parameter value and a is the USampleRF ExcessBW parameter value).
Equivalence of RaisedCosine and PolyPhaseFilter Option of USampleRF. shows

how to set the RaisedCosine and the USampleRF components to get equivalent
results.

Equivalence of RaisedCosine and PolyPhaseFilter Option of USampleRF.

=] ¥R InsertionPhase is
WARD ignored when Type is
UpSamplingFactar=6 set to PolyPhaseFilter
Alpha=0.35
F
—m A [» T e
RaizedCozine USampleRF
R2 Lz
Decimation=1 Type=PalyPhaszeFiter
DecimationPhase=0 Ratio=UpSamplingF actor
Interpolation=UpSamplingF actor InzedionPhaze=1
Length=20=UpSamplingF achor ExcessBW=Alpha

Symbolinterval=UpSamplingFactor
ExcessBW=2Alpha
SouareRoot=M0

e The Linear option can be implemented by the FIR component. FIR parameters
should be set as follows: Taps = "0 (1/N) (2/N) ... ((N-1)/N) 1 ((N-1)/N) ...
(1/N)", Decimation = 1, DecimationPhase = 0, Interpolation = N (where N is the
USampleRF Ratio parameter value). (Note that the open and close quotes in the
Taps parameter value are required.) Equivalence of FIR and Linear Option of
USampleRF shows how to set the FIR and the USampleRF components to get
equivalent results.

Equivalence of FIR and Linear Option of USampleRF

252



Advanced Design System 2011.01 - Numeric Components

InzertonPhase and

ARG ExcessBVYY are ignored
VAR when Type is set to Linear
UpSamplingFactor=4

RF

FIR: USampleRF

F4 ]

Tapz="0 (147 (247 (34) 1 (34 (24 (14 Type=Linear

Decimation=1 Ratio=UpSamplingFactor

DecimationPhase=0 InzertionPhaze=0

Interpolation=UpSamplingF actor ExcessBW=0.5

» For completeness, Equivalence of UpSample and Zerolnsertion Option of
USampleRF shows the equivalance of UpSample and the Zerolnsertion option
USampleRF.

Equivalence of UpSample and ZeroInsertion Option of USampleRF

Ex] var ExcessBW is ignored
WARL when Type is set to
UpSamplingFactor=10 Zerolnserion
Phaze=7

F
UpSample USampleRF
R3 4
Factar=p=amplingFactaor Type=Zerolnzertion
Phaze=Phaze Ratio=pSamplingFactor
Fill=0.0 InzertionPhaze=Phaze
ExcezsBW=0.5

4. For general information regarding numeric control components, refer to Numeric
Control Components (numeric).

253



Advanced Design System 2011.01 - Numeric Components

VarDelay

Lyl R

Description: Variable Delay
Library: Numeric, Control
Class: SDFVarDelay

Parameters

Name Description Default Unit Type Range
MaxDelay Maximum delay |10 int |[0, o)
Pin Inputs

Pin Name |Description Signal Type

1 Jinput anytype
2 |control int
Pin Outputs

Pin Name Description |Signal Type
3  |output anytype

Notes/Equations

This component implements a varying delay by delaying the input signal by as many
samples as specified by the signal applied to the control pin. The maximum delay needs to
be specified in the MaxDelay parameter.

The component uses an internal buffer of MaxDelay samples. The value at the control pin
decides which value in the buffer is output. A control value of 0 or less outputs the most
current sample in the buffer (the one just read). A control value of MaxDelay, or more,
outputs the oldest sample in the buffer (the one read MaxDelay executions of the
component ago). A control value of N (0 < N < MaxDelay) outputs the sample in the
buffer that was read N executions of the component ago.

254



Advanced Design System 2011.01 - Numeric Components

Numeric Fixed-Point DSP Components

AbsSyn (numeric)
AccumSyn (numeric)
AddRegSyn (numeric)
AddSyn (numeric)
And2Syn (numeric)
AndSyn (numeric)
BarShiftSyn (numeric)
BitFillSyn (numeric)
BPSKSyn (numeric)
BufferSyn (numeric)
Bus8MergeSyn (numeric)
Bus8RipSyn (numeric)
BusMergeSyn (numeric)
BusRipSyn (numeric)
CastSyn (numeric)
CombFiltSyn (numeric)
Comp6Syn (numeric)
CompSyn (numeric)
ConstSyn (numeric)
CountCombSyn (numeric)
CounterSyn (numeric)
Div2ClockSyn (numeric)
DPRamRegSyn (numeric)
DPRamSyn (numeric)
DPSKSyn (numeric)
DualNCOSyn (numeric)
FIRSyn (numeric)
FixedGainSyn (numeric)
FixToFloatSyn (numeric)
FloatToFixSyn (numeric)
FSMSyn (numeric)
GainSyn (numeric)
IntegratorSyn (numeric)
LCounterSyn (numeric)
MultRegSyn (numeric)
MultSyn (numeric)
Mux2Syn (numeric)
Mux3Syn (numeric)
Mux4Syn (numeric)
MuxSyn (numeric)
Nand2Syn (numeric)
NCOSyn (numeric)
Nor2Syn (numeric)
NotSyn (numeric)
OQPSKSyn (numeric)
Or2Syn (numeric)
OrSyn (numeric)
PI4DQPSKSyn (numeric)
PSK8Syn (numeric)

255



Advanced Design System 2011.01 - Numeric Components
QPSKSyn (numeric)
RamRegSyn (numeric)
RamSyn (numeric)
RegSyn (numeric)
RomRegSyn (numeric)
RomSyn (numeric)
SerialFIRSyn (numeric)
ShiftRegPPSyn (numeric)
ShiftRegPSSyn (numeric)
ShiftRegSPSyn (numeric)
SineCosineSyn (numeric)
SinkRespSyn (numeric)
SinkStimSyn (numeric)
SubRegSyn (numeric)
SymFIRSyn (numeric)
Xor2Syn (numeric)
XorSyn (numeric)
ZerolnterpSyn (numeric)

The numeric fixed-point DSP components provide digital signal processing functions on
single data points of data that are fixed-point (fixed). These components do not accept
any matrix class of signal.

If a component receives another class of signal, the received signal is automatically
converted to the signal class specified as the input of the component. Auto conversion
from a higher to a lower precision signal class may result in loss of information. The auto
conversion from timed, complex or floating-point (real) signals to a fixed signal uses a
default bit width of 32 bits with the minimum number of integer bits needed to represent
the value. For example, the auto conversion of the floating-point (real) value of 1.0
creates a fixed-point value with precision of 2.30; a value of 0.5 would create one of
precision of 1.31. For details on conversions between different classes of signals, refer to
Conversion of Data Types (ptolemy) in the ADS Ptolemy Simulation (ptolemy)
documentation.

Fixed-point DSP components (such as registers, counters, shift registers) that have clock
inputs have the following simulation behavior depending on whether clock inputs are
connected or not. If clock is not connected, then each simulation step is taken as a
positive clock edge; for example, if the data register RegSyn clock is not connected, then
RegSyn simulates a a unit-step delay. If clock is connected, then the component will
simulate according to the clock input state; for example, if the data register RegSyn clock
is connected, then RegSyn simulates as a positive edge clock sensitive register.

Fixed-point DSP components (such as registers, counters, and shift registers) that have
set inputs have the following simulation behavior depending on whether the set inputs are
connected or not. If the set input is not connected, then the component is reset at the first
simulation step. If the set input is connected, then the component will simulate according
to the set input state.

For fixed-point DSP components that perform math operations (such as adders,
subtractors, gain blocks, and filters), the ArithType parameter specifies the arithmetic
type of the output signal and can be set to TWOS_COMPLEMENT or UN_SIGNED values.
When the input fixed-point signal has an arithmetic type that is not the same as

ArithType, the bit pattern representing the input number will be interpreted in the
256



Advanced Design System 2011.01 - Numeric Components

arithmetic defined by ArithType. This can lead to unexpected results; therefore, arithmetic
types should not be mixed when performing math operations.

257



Advanced Design System 2011.01 - Numeric Components

1'_', dols  aul _'2

Description: Absolute

Library: Numeric, Fixed-Point DSP
Class: SDFAbsSyn

Derived From: SDFHPFix

Parameters

Name Description Default Type

RoundFix fixed-point computations, assignments, and data type TRUNCATE enum
conversions option: TRUNCATE, ROUND

OutputPrecision |precision of the output in bits 2.14 precision

ArithType arithmetic type of output: TWOS_COMPLEMENT, UN_SIGNED TWOS_COMPLEMENT lenum

OvflowType overflow characteristic for device: WRAPPED, SATURATE WRAPPED enum

Pin Inputs

Pin [Name |Description Signal Type
1 Data fix
Pin Outputs

Pin [Name |Description Signal Type
2 |Result fix

Notes/Equations

1. AbsSyn presents an output with the absolute value of the given data input.

2. OutputPrecision specifies the fixed-point precision format of the output. For example,
if OutputPrecision = 1.15, 1 bit is used for representing the integer part of the
output, and 15 bits are used to represent the fractional portion of the output.

3. For general information regarding numeric fixed-point DSP functions, refer to
Numeric Fixed-Point DSP Components (numeric).

258



Advanced Design System 2011.01 - Numeric Components

AccumSyn

b

P ]

5

ad res

vy

dalo,
ALl

Description: Scaled by 1/2 Accumulator
Library: Numeric, Fixed-Point DSP
Class: SDFAccumSyn

Derived From: SDFHPFix

Parameters

Name Description

OutputPrecision |precision of the output in bits
ArithType arithmetic type of output: TWOS_COMPLEMENT,

UN_SIGNED

Pin Inputs

Pin [Name |Description

1 |Data |Data input — Data input which is loaded by asserting Load
input

2 |Load |Load input - loads Data into accumulator of accumulator

3 |Clock |Clock input - optional control pin

4 |CE Clock enable input - optional control pin

5 |Set Asynchronous set/reset input — optional control pin

Pin Outputs

Pin Name Description Signal Type

6

Result fix

Notes/Equations

Default Type
2.14 precision
TWOS_COMPLEMENT lenum

Signal Type
fix

fix
fix
fix
fix

1. This model is a scale-by-half accumulator. Physically, the model can be viewed as an
adder that adds the present input Data to one-half the value of the previous output
of the adder. The delayed adder output feedback is achieved by using an internal
data register that is clocked by the positive edge transitions of the Clock 1-bit. In
discrete equation form, the equation defining the model is:

Result = Previous_Result/2 + Data

Internal Structure of Scale-by-Half Accumulator Model

259



Advanced Design System 2011.01 - Numeric Components

~ ACC N \Res:ilt
N - Bl LEX a REG o
Load ‘T—

Cloizk
Fiesst

CE

. The Clock input is optional:

« if it is connected, the model will operate based on the positive edge transitions
of the Clock input

« if it is not connected, the model will operate as if every sample step of the
simulator is a positive edge transition

. Assertion of the Reset input by bringing it low (a value of 0) will clear the internal

data register.

. The (optional) CE input is the clock-enable control for the internal data register.

« if it is connected and has a high value (a value of 1), the internal data register is
enabled and will load its input onto a positive Clock edge

« if it is not connected and low (a value of 0) the clock to the internal data register
is disabled. The internal data register is always enabled when the CE input is not
connected

. The (optional) Load input is asserted by bring it high (a value of 1).

« if it is asserted, the Data input is loaded into the internal data register

e if it is unconnected, the Load is never asserted

. For general information regarding numeric fixed-point DSP functions, refer to

Numeric Fixed-Point DSP Components (numeric).

260



Advanced Design System 2011.01 - Numeric Components
AddRegSyn

4_5
vy
}.

'

i

vy

ADPEL G

Description: Registered Adder
Library: Numeric, Fixed-Point DSP
Class: SDFAddRegSyn

Derived From: SDFHPFix

Parameters

Name Description Default Type

RoundFix fixed-point computations, assignments, and data type TRUNCATE enum
conversions option: TRUNCATE, ROUND

OutputPrecision |precision of the output in bits 2.14 precision

ArithType arithmetic type of output: TWOS_COMPLEMENT, UN_SIGNED TWOS_COMPLEMENT enum

OvflowType overflow characteristic for device: WRAPPED, SATURATE WRAPPED enum

Pin Inputs

Pin Name Description Signal Type

1 A fix

2 B fix

3 |Clock |Clock input — optional control pin fix

4 |CE Clock enable input - optional control pin fix

5 |Set Asynchronous set/reset input — optional control pin [fix

Pin Outputs

Pin /Name Description Signal Type
6 |Result fix

Notes/Equations

1. This model is a registered adder. It calculates the addition of its A and B data inputs
(A+B) and registers its output Result such that it has the specified precision as set in
the OutputPrecision parameter.

2. The Clock input is optional:

« if it is connected, the model will operate based on the positive edge transitions
of the Clock input

« if it is not connected, the model will operate as if every sample step of the
simulator is a positive edge transition

3. Assertion of the Reset input by bringing it low (a value of 0) will clear the output data
register.

4, The (optional) CE input is the clock-enable control for the output data register:

« if it is connected and has a high value (a value of 1), the output data register is

261



Advanced Design System 2011.01 - Numeric Components
enabled and will load the addition result upon a positive Clock edge.
« if it is connected, and low (a value of 0) the clock to the output data register is
disabled.
« if the CE input is not connected, the output data register is always enabled.
5. For general information regarding numeric fixed-point DSP functions, refer to
Numeric Fixed-Point DSP Components (numeric).

262



Advanced Design System 2011.01 - Numeric Components

Description: Adder/Subtractor
Library: Numeric, Fixed-Point DSP
Class: SDFAddSyn

Derived From: SDFHPFix

Parameters

Name Description Default Type

RoundFix fixed-point computations, assignments, and data type TRUNCATE enum
conversions option: TRUNCATE, ROUND

OutputPrecision |precision of the output in bits 2.14 precision

ArithType arithmetic type of output: TWOS_COMPLEMENT, UN_SIGNED TWOS_COMPLEMENT lenum

OvflowType overflow characteristic for device: WRAPPED, SATURATE WRAPPED enum

AddSub enumeration state: ADD, SUBTRACT ADD enum

Pin Inputs

Pin [Name |Description Signal Type

1 A fix
2 B fix
3 |Sub fix
Pin Outputs

Pin /Name Description Signal Type
4 |Result fix

Notes/Equations

1. The add/sub control input pin is optional.
o If the add/sub control input pin is not connected, the AddSub parameter is used
to specify whether the adder adds or subtracts.
« If the add/sub control input pin is connected: a zero value indicates add; a non-
zero value indicates subtract. (The AddSub parameter is ignhored in this case.)
2. OutputPrecision specifies the fixed-point precision format of the output. For example,
if OutputPrecision = 1.15, 1 bit is used to represent the integer part of the output,
and 15 bits are used to represent the fractional portion of the output.
3. When AddSub is used as an adder, out = A + B; when AddSub is used as a
subtractor, out = A — B.
4, Bit alignment is automatic at the inputs so the two input values are added correctly.
This is done by zero padding or sign extending the inputs such that their decimal
points are aligned.

263



Advanced Design System 2011.01 - Numeric Components

5. When the arithmetic type of an input to AddSyn is different from the ArithType
parameter of AddSyn, then AddSyn interprets the input bit pattern in the arithmetic
type specified by the ArithType parameter. For example, assume that the ArithType
of AddSyn is TWOS_COMPLEMENT and that one of its inputs is 0.7 represented in
unsigned arithmetic and 0.8 precision. The corresponding bit pattern is 10110011
(1x1/24+40x1/4+1x1/8+1x 1/16 +0x1/32+0x1/64+ 1 x 1/128 +
1 x 1/256 = 0.69921875).
In two's complement this bit pattern represents a negative number since the first bit
is 1. To get the magnitude of this number we first complement the bits to get
01001100 and then add 1 to get 01001101. Therefore, this bit pattern has a value of
-0x1/2+1x1/4+0x1/8+0x 1/16 +1x1/32+1x1/64+0x 1/128 +
1 x 1/256 = 0.30078125), and this is the value that AddSyn will use.
Thus, arithmetic types should not be mixed when adding or subtracting fixed-point
numbers.

6. For general information regarding numeric fixed-point DSP functions, refer to
Numeric Fixed-Point DSP Components (numeric).

264



Advanced Design System 2011.01 - Numeric Components

And2Syn

M |

Description: 2-input AND
Library: Numeric, Fixed-Point DSP
Class: SDFAnd2Syn

Derived From: SDFHPFix

Parameters

Name Description Default Type

Width Width of an input 8 int
bus.

Pin Inputs

Pin /Name Description Signal Type

1 A fix
2 B fix
Pin Outputs

Pin Name Description Signal Type
3 |Result fix

Notes/Equations

1. This model is a 2-input AND gate that takes a bitwise AND of inputs A and B (both of
bitwidth Width) and outputs the results; that is, Result = A and B.

2. For general information regarding numeric fixed-point DSP functions, refer to
Numeric Fixed-Point DSP Components (numeric).

265



AndSyn

Description: Bitwise AND

Advanced Design System 2011.01 - Numeric Components

Library: Numeric, Fixed-Point DSP

Class: SDFAndSyn

Derived From: SDFHPFix

Parameters

Name Description

Default Type

Width |size of a bus segment within the input bus 8 int

Size number of bus segments within the input 2 int
bus

Pin Outputs

Pin Name Description Signal Type

1 |Data fix
Pin Inputs

Pin Name Description Signal Type

2 Result fix

Notes/Equations

1. The input bus is composed of Size number of smaller bus segments. Each bus
segment within the input bus is of bitwidth Width. AndSyn performs a bitwise AND of
the bus segments resulting in the output Result of bitwidth Width. For example,
Width = 8, Size = 2 means that the input bus is interpreted as having 2 bus
segments, each of bitwidth 8. The output of AndSyn is the bitwise AND of the 2 bus

segments, as illustrated below.

Width = 8, Size = 2

_z
?‘—

2. An example design where two 8-bit signals are ANDed together is shown below.

AndSyn Example Design

266



Advanced Design System 2011.01 - Numeric Components

AndSyn Example Design

-—
21l 4N
-

AuS% MERGE ind3yn
BuokargeSyn A
81 Wldih=g
Widih=18 -

3. For general information regarding numeric fixed-point DSP functions, refer to
Numeric Fixed-Point DSP Components (numeric).

267



Advanced Design System 2011.01 - Numeric Components

BarShiftSyn

F]

v

Description: Barrel Shifter
Library: Numeric, Fixed-Point DSP
Class: SDFBarShiftSyn

Derived From: SDFHPFix

Parameters

Name Description Default Type

OutputPrecision |precision of the output in bits 2.14 precision

ArithType arithmetic type of output: TWOS_COMPLEMENT, UN_SIGNED TWOS_COMPLEMENT |enum

Mode type of shifting: LOGICAL_SHIFT, ARITHMETIC_SHIFT, LOGICAL_SHIFT enum
ROTATE_SHIFT

Direction direction of shift in the barrel shifter: RIGHT_SHIFT, LEFT_SHIFT enum
LEFT_SHIFT

NShift number of bit positions to shift by 0 int

Pin Inputs

Pin [Name |Description Signal Type

1 |Data |Input data fix

2 |Dist |Dist control input for how many bits to shift by |[fix

Pin Outputs

Pin Name Description Signal Type

3 Result |Barrel shift result fix

Notes/Equations

1. BarShiftSyn shifts the input bits by the amount specified by the control input Dist or
(if Dist is not connected) by the integer parameter NShift. The output bit width,
number of integer bits, and arithmetic type are set by the parameters of the barrel
shifter.

« Logical shifting to the right
(Mode = LOGICAL_SHIFT, Direction = RIGHT_SHIFT)
inserts zeros in the vacated most significant bits; logical shifting to the left
(Mode = LOGICAL_SHIFT, Direction = LEFT_SHIFT)
is the same as Arithmetic shifting to the left.
o Arithmetic shifting to the right
(Mode = ARITHMETIC_SHIFT, Direction = RIGHT_SHIFT)
will sign extend the vacated most significant bits.
« Rotate shifting to the right
(Mode = ROTATE_SHIFT, Direction = RIGHT_SHIFT)
268



Advanced Design System 2011.01 - Numeric Components
will shift the least significant bits into the vacated most significant bits.
Conversely, Rotate shifting to the left
(Mode = ROTATE_SHIFT, Direction = LEFT_SHIFT)
will shift the most significant bits into the vacated least significant bits.

2. OutputPrecision specifies the fixed-point precision format of the output. For example,
if OutputPrecision = 1.15, 1 bit is used for representing the integer part of the
output, and 15 bits are used to represent the fractional portion of the output.

3. Direction of shifting is done assuming that the MSB is on the left and LSB is on the
right. LEFT_SHIFT will shift towards the MSB. Conversely, RIGHT_SHIFT will shift
towards the LSB.

4, For general information regarding numeric fixed-point DSP functions, refer to
Numeric Fixed-Point DSP Components (numeric).

269



Advanced Design System 2011.01 - Numeric Components

BitFillSyn

Description: Bit Fill

Library: Numeric, Fixed-Point DSP
Class: SDFBItFillSyn

Derived From: SDFHPFix

Parameters

Name Description Default Type

Width |size of output 1 int
bus

Pin Inputs

Pin [Name |Description Signal Type
1 |Data fix
Pin Outputs

Pin [Name |Description Signal Type
2 |Result fix

Notes/Equations

1. BitFillSyn takes the single bit input and copies it to an output bus of bitwidth Width.
It replicates the single bit input value to the output bus.

2. For general information regarding numeric fixed-point DSP functions, refer to
Numeric Fixed-Point DSP Components (numeric).

270



Advanced Design System 2011.01 - Numeric Components

BPSKSyn

1 palicta rost | —pp?

BPSK

Description: BPSK Encoder
Library: Numeric, Fixed-Point DSP
Class: SDFBPSKSyn

Derived From: SDFHPFix

Parameters

Name Description Default Type

Width |bit width of encoder 8 int
output

Pin Inputs

Pin /Name Description Signal Type
1 |Data fix
Pin Outputs

Pin /Name Description Signal Type
2 |Result fix

Notes/Equations

1. The output signal Result of the BPSK encoder is a twos-complement fixed-point

number with 1 sign bit and (Width —1) fractional bits.

An input bit value of 1 is mapped to the most positive-valued fixed-point number that
can be represented by 1 sign bit and (Width-1) fractional bits. Conversely, an input
bit value of 0 is mapped to the next-to-most negative-valued fixed-point number that
can be represented by 1 sign bit and (Width-1) fractional bits. This ensures that the
positive and negative valued outputs of the model have the same magnitude.

For example, with Width = 8, mapping will be done in the following manner:

 input bit value of 1 will be mapped to 01111111
« input bit value of 0 will be mapped to 10000001

2. For general information regarding numeric fixed-point DSP functions, refer to the

Numeric Fixed-Point DSP Components (numeric).

271



Advanced Design System 2011.01 - Numeric Components

BufferSyn

«_+z

Description: Buffer

Library: Numeric, Fixed-Point DSP
Class: SDFBufferSyn

Derived From: SDFHPFix

Parameters

Name |Description Default Type

Width number of bits in 16 int
input

InvMask |bit mask pattern 0 int

Pin Inputs

Pin Name Description Signal Type
1 |Data fix
Pin Outputs

Pin Name Description Signal Type
2 |Result fix

Notes/Equations

1. BufferSyn inverts the bits within the input bus based on the InvMask parameter; 1 in
a bit position in InvMask will invert the corresponding bit in the input bus.
InvMask can be specified in hex (0x prefix), octal (0 prefix),
binary (0Ob prefix), or decimal (without a 0 prefix). For example, if Width = 2:
e to invert both inputs bits, specify: InvMask = 0x3 (hex), InvMask = 03 (octal),
InvMask = 0b11 (binary), InvMask = 3 (decimal).
« to invert the LSB of the two input bits, specify: InvMask = 0x1 (hex), InvMask =
01 (octal), InvMask = 0b01 (binary), InvMask = 1 (decimal).
2. For general information regarding numeric fixed-point DSP functions, refer to the
Numeric Fixed-Point DSP Components (numeric).

272



Advanced Design System 2011.01 - Numeric Components

Bus8MergeSyn

1

|3 | [ [ O 0 O
YYYYYYYY
e Wy
H
\A

Description: 8-Bit-to-Bus Merge
Library: Numeric, Fixed-Point DSP
Class: SDFBus8MergeSyn
Derived From: SDFHPFix

Parameters

Name Description Default Type

Width \number of bits in output int
bus

Pin Inputs

Pin [Name |Description Signal Type

1 |Data0 fix
2 |Datal fix
3 |Data2 fix
4 |Data3 fix
5 |Data4 fix
6 |Data5 fix
7 |Data6 fix
8 |Data? fix
Pin Outputs

Pin Name |Description Signal Type
9 |Output fix

Notes/Equations

1. Bus8MergeSyn merges its eight 1-bit inputs into a bus.

2. The most significant bit in the output bus is taken from the 1-bit Data7 input pin; the
next most significant bit is taken from the 1-bit Data6, and so on.

3. Width parameter specifies the size of the output bus. Input pins must be connected
to the appropriate Width. For example: if Width = 1, Data7 is connected; if Width =
5, input pins Data7, Data6, Data5, Data4, and Data3 must all be connected.

4, For general information regarding numeric fixed-point DSP functions, refer to
Numeric Fixed-Point DSP Components (numeric).

273



Advanced Design System 2011.01 - Numeric Components

Bus8RipSyn

YYYYTEY

LAA

Description: Bus-to-8-Bit Ripper
Library: Numeric, Fixed-Point DSP
Class: SDFBus8RipSyn

Derived From: SDFHPFix

Pin Inputs

Pin Name Description Signal Type
1 |Data fix
Pin Outputs

Pin Name |Description |Signal Type

2 |Output0 fix
3 |Outputl fix
4  |Output2 fix
5 |Output3 fix
6 |Outputd fix
7 |Output5 fix
8 |Output6 fix
9 |Output? fix

Notes/Equations

1. Bus8RipSyn rips out the highest byte in the data input bus and outputs them as 1-bit
outputs.

2. The most significant bit in the data input bus is output on the pin marked Output7;
correspondingly, the least significant bit in the data input bus is output on the pin
marked OutputO.

3. For general information regarding numeric fixed-point DSP functions, refer to the
Numeric Fixed-Point DSP Components (numeric).

274



Advanced Design System 2011.01 - Numeric Components

BusMergeSyn

Description: Bus Merge

Library: Numeric, Fixed-Point DSP
Class: SDFBusMergeSyn

Derived From: SDFHPFix

Parameters

Name Description Default Type

Width |bitwidth of 0 int
output

Pin Inputs

Pin /Name Description Signal Type

1 A fix
2 B fix
Pin Outputs

Pin Name Description Signal Type
3 |Result fix

Notes/Equations

1. BusMergeSyn merges the two input buses A and B into a larger, merged bus.
In the merged bus, A will be located in the MSB portion, while B will be located in the
LSB portion.

2. The output bitwidth is specified by Width and must be equal to the sum of the two
input bitwidths.

3. The output arithmetic type is always unsigned, Width number of integer bits, 0
fractional bits.

4. For general information regarding numeric fixed-point DSP functions, refer to
Numeric Fixed-Point DSP Components (numeric).

275



Advanced Design System 2011.01 - Numeric Components

BusRipSyn

|‘-L

_ f\_ r 2

Description: Bus Ripper

Library: Numeric, Fixed-Point DSP
Class: SDFBusRipSyn

Derived From: SDFHPFix

Parameters
Name Description Default Type
OutputPrecision |precision of the output in bits 2.14 precision
ArithType arithmetic type of output: TWOS_COMPLEMENT, UN_SIGNED TWOS_COMPLEMENT |enum
Offset how far to right of MSB (Sign bit for TWOS_COMPLEMENT) to |0 int

take ripped bit_vector
RipPrecision precision of ripped-out segment of input bus 2.6 precision
Pin Inputs

Pin [Name |Description Signal Type
1 Data fix
Pin Outputs

Pin Name |Description Signal Type
2 |Result fix
3 |PassThru fix

Notes/Equations

1. BusRipSyn rips out a smaller contiguous bit vector (Fix) from the input bit vector
(Fix).

2. The arithmetic type of the RIP output is the same as ArithType.

3. OutputPrecision specifies the fixed-point precision format of the output. For example,
if OutputPrecision = 1.15, 1 bit is used for representing the integer part of the
output, and 15 bits are used to represent the fractional portion of the output.

4. For general information regarding numeric fixed-point DSP functions, refer to
Numeric Fixed-Point DSP Components (numeric).

276



Advanced Design System 2011.01 - Numeric Components

CastSyn

1 _pplicts ouf—pp?

Description: Cast

Library: Numeric, Fixed-Point DSP
Class: SDFCastSyn

Derived From: SDFHPFix

Parameters

Name Description Default Type

OutputPrecision |precision of the output in bits 2.14 precision

ArithType arithmetic type of output: TWOS_COMPLEMENT, TWOS_COMPLEMENT enum
UN_SIGNED

Pin Inputs

Pin Name Description Signal Type
1 |Data fix
Pin Outputs

Pin Name Description Signal Type
2 |Result fix

Notes/Equations

1. CastSyn copies the bits within the input bus to the output bus. It does not alter the
input bits, but only changes the precision and arithmetic type associated with the
input bits. The total number of output bits should be the same as the input.

2. OutputPrecision specifies the fixed-point precision format of the output. For example,
if OutputPrecision = 1.15, 1 bit is used for representing the integer part of the
output, and 15 bits are used to represent the fractional portion of the output.

3. For general information regarding numeric fixed-point DSP functions, refer to
Numeric Fixed-Point DSP Components (numeric).

277



Advanced Design System 2011.01 - Numeric Components

CombFiltSyn

2
.
I_.' EiSar g

Description: Comb Filter
Library: Numeric, Fixed-Point DSP
Class: SDFCombFiltSyn

Derived From: SDFHPFix

Parameters

Name Description
OutputPrecision |precision of the output in bits

ArithType

UN_SIGNED
PipeStages Depth of pipeline, must be > 0.

Pin Inputs

Pin |[Name |Description
1 |Data |Data input
2 |Clock |Clock input - optional control pin

3 |CE Clock enable input - optional control
pin
Pin Outputs

Pin |[Name |Description Signal Type

4  |Result |Comb Filter output [fix

Notes/Equations

arithmetic type of output: TWOS_COMPLEMENT,

Signal Type
fix
fix
fix

Default Type
2.14 precision
TWOS_COMPLEMENT lenum

1 int

1. This model implements the transfer function of (1-z "M ) which comprises the comb
section of a comb filter, where M = PipeStages. In other words, a delayed version of
the input data value (PipeStages clocks previously) is subtracted from the present
input data value. In discrete equation form, it can be represented as:

Result = Data - Data(Delayed by M clocks)

Internal Structure of Comb Section Model

278



Advanced Design System 2011.01 - Numeric Components

Data s S Result
~ -LIL/_ - -
N Delay by b J
~*™|clocks REG
Clock
CE

For general information regarding numeric fixed-point DSP functions, refer to
Numeric Fixed-Point DSP Components (numeric).

279



Advanced Design System 2011.01 - Numeric Components

Comp6Syn

Ly
T R

xxxxx

Description: Compare with 6 Outputs
Library: Numeric, Fixed-Point DSP
Class: SDFComp6Syn

Derived From: SDFHPFix

Parameters

Name Description Default Type

ArithType |arithmetic type of output: TWOS_COMPLEMENT, TWOS_COMPLEMENT enum
UN_SIGNED

Pin Inputs

Pin [Name |Description Signal Type

1 A fix
2 B fix
Pin Outputs

Pin /Name Description Signal Type

3 |GT fix
4 |GE fix
5 LT fix
6 |LE fix
7  EQ fix
8 |INE fix

Notes/Equations

1. Comp6Syn compares the value as represented by the two inputs and tests for six
conditions. If a condition is TRUE, the output result is a 1, else 0.

2. Comparison modes are: A+#B,A=B,A<B,A<B,A=B,A>B.

3. For general information regarding numeric fixed-point DSP functions, refer to
Numeric Fixed-Point DSP Components (numeric).

280



Advanced Design System 2011.01 - Numeric Components

1_.. . :.’-.u, i —Fg

Description: Compare

Library: Numeric, Fixed-Point DSP
Class: SDFCompSyn

Derived From: SDFHPFix

Parameters

Name Description
ArithType |arithmetic type of output: TWOS_COMPLEMENT, UN_SIGNED

Mode condition to be tested: EQUAL, LESS_OR_EQUAL,
GREATER_OR_EQUAL

Pin Inputs

Pin Name Description Signal Type

1 A fix
2 B fix
Pin Outputs

Pin Name |Description Signal Type
3 |Result fix
4 |ResultB fix

Notes/Equations

Default Type
TWOS_COMPLEMENT |enum
EQUAL enum

1. CompSyn compares the value as represented by the two inputs and tests for the
condition specified by Mode. If the condition is TRUE, the output out will go HIGH and

the output @ 4%
will go LOW.
Comparison modes are: A =B, A < B, A =>B.

WN

Numeric Fixed-Point DSP Components (numeric).

281

For general information regarding numeric fixed-point DSP functions, refer to



Advanced Design System 2011.01 - Numeric Components

ConstSyn

>1

Description: Constant

Library: Numeric, Fixed-Point DSP
Class: SDFConstSyn

Derived From: SDFHPFix

Parameters

Name Description Default Type

OutputPrecision |precision of the output in bits 2.14 precision

ArithType arithmetic type of output: TWOS_COMPLEMENT, TWOS_COMPLEMENT enum
UN_SIGNED

ConstValue constant value of device, specified as a real value 1.0 real

Pin Outputs

Pin Name Description Signal Type
1 |Result fix

Notes/Equations

1. ConstValue is converted to the precision and type specified by OutputPrecision and
ArithType.

2. OutputPrecision specifies the fixed-point precision format of the output. For example,
if OutputPrecision = 1.15, 1 bit is used for representing the integer part of the
output, and 15 bits are used to represent the fractional portion of the output.

3. For general information regarding numeric fixed-point DSP functions, refer to
Numeric Fixed-Point DSP Components (numeric).

282



Advanced Design System 2011.01 - Numeric Components

CountCombSyn

1 E 2
e [T B

Description: Counter Combinational Logic
Library: Numeric, Fixed-Point DSP

Class: SDFCountCombSyn

Derived From: SDFHPFix

Parameters

Name Description Default Type

Width size of counter 8 int

CounterType |type of counter: JOHNSON_CTR, LFSR_CTR, JOHNSON_CTR |enum
GRAY_CTR

LFSR_Poly |LFSR polynomial to be used in LFSR counter Oxff string

Pin Inputs

Pin Name Description Signal Type
1 |Data fix
Pin Outputs

Pin Name Description Signal Type
2 |Result fix

Notes/Equations

1. CountCombSyn models the combinational logic portion of a Johnson, LFSR (linear
feedback shift register), or Gray counter. Usage is illustrated.

win Ml 1 -

Reg  |wg—

iy

2. LFSR_Poly sets the LFSR polynomial to be used when CounterType = LFSR_CTR. It is
specified as a hex string; for example, LFSR_Poly = OxFE.

3. For general information regarding numeric fixed-point DSP functions, refer to
Numeric Fixed-Point DSP Components (numeric).

283



Advanced Design System 2011.01 - Numeric Components

CounterSyn

4

it

v

GLME LR :_..5

. 4

Description: Binary Counter
Library: Numeric, Fixed-Point DSP
Class: SDFCounterSyn

Derived From: SDFHPFix

Parameters

Name Description Default Type

Width |size of binary counter 16 int

ValueS |value of counter when Set is asserted (low) |0 int

Pin Inputs

Pin Name Description Signal

Type

1 |Clock [Clock signal - if connected, counter is positive edge triggered on clock transitions. fix

2 |CE Clock Enable signal - if connected and asserted (high) enables counter when fix
asserted (high).

3 |Up Up/Down control signal - if connected and asserted (high) counter counts up. fix

4 |Set Set/Reset control signal - if connected and asserted (low) counter resets fix

Pin Outputs

Pin |[Name |Description Signal Type

5 1Q Counter output signal - parallel fix
data.

Notes/Equations

1.

2.
3. ValueS can be specified in hex (0x prefix), octal (0 prefix),

The Binary Counter is positive-edge clock triggered when the CE pin is asserted
(high).
The control pins are optional-these do not have to be connected.

binary (0Ob prefix), or decimal (without a 0 prefix).

For example, to specify a ValueS of decimal value 31, set

ValueS = 31 (decimal), ValueS = 0x1F (hex), ValueS = 037 (octal), or ValueS =
Ob11111 (binary).

For general information regarding numeric fixed-point DSP functions, refer to
Numeric Fixed-Point DSP Components (numeric).

284



Advanced Design System 2011.01 - Numeric Components

Div2ClockSyn

Description: Power-of-2 Clock Divider
Library: Numeric, Fixed-Point DSP
Class: SDFDiv2ClockSyn

Derived From: SDFHPFix

Parameters

Name |Description Default Type

DivideBy |Value to divide input Clock by.: TWO, FOUR, EIGHT, SIXTEEN [TWO enum
Pin Inputs

Pin [Name Description Signal Type
1 |InClock |Clock input fix

2 |Set Asynchronous set/reset input — optional control pin [fix

Pin Outputs

Pin Name |Description Signal Type
3 |DivClock |Clock output [fix

Notes/Equations

1. This model is a divide-by-power-of-2 clock divider; options are to divide by 2, 4, 8, or
16.

2. For general information regarding numeric fixed-point DSP functions, refer to
Numeric Fixed-Point DSP Components (numeric).

285



Advanced Design System 2011.01 - Numeric Components

DPRamRegSyn

b

o o

f

£

Description: Registered Dual-Port RAM
Library: Numeric, Fixed-Point DSP
Class: SDFDPRamRegSyn

Derived From: SDFHPFix

Parameters

Name Description Default Type

OutputPrecision |precision of the output in bits 2.14 precision

ArithType arithmetic type of output: TWOS_COMPLEMENT, TWOS_COMPLEMENT enum

UN_SIGNED

Depth Number of words in RAM 16 int

ramFile File containing initial RAM values filename

ramFileFormat |Format of RAM init file.: REAL, HEX HEX enum

Pin Inputs

Pin Name Description Signal
Type

1 |AddrR |input read address fix

2 |AddrW |input write address fix

3 |Data |input data fix

4  |Clock |Clock input - optional control pin fix

5 |CE Clock enable input - optional control pin fix

6 |WE write enable input: if low, then the input data is written to the RAM location specified [fix

by AddrWw.
Pin Outputs

Pin Name Description Signal Type
7 1Q output data [fix

Notes/Equations

1. This model implements a dual-port RAM with a registered output. Given an input
address in AddrW (write address), and data in Data, the model will write the input
Data into an internal array if WE is asserted by a low value. If WE is not asserted,
then the model will not write Data into the address location as specified in AddrW.
The input address in AddrR (read address) is used to read out the data in the dual-
port RAM model, which is sent to the output Q.

2. The output of the dual-port RAM is registered with a positive edge Clock input. The
clock enable CE control input is optional:

286



Advanced Design System 2011.01 - Numeric Components
« if it is not connected, the model is always enabled
« if it is connected, it is enabled by a high value in CE
3. The initial values in the dual-port RAM can be defined in the (optional) file as
specified in the ramFile parameter. The format of the file is specified by the
ramFileFormat parameter; the initial values can be specified as REAL or HEX. The
address of each initial data read into the model is the same as the line number of the
corresponding data read from the initialization file.
The initial values are specified as a column of values as in the following examples.
« if ramFileFormat = REAL, which specifies that the RAM initialization file contains
real values, an example of such a file would be:
0.98
0.24
0.12

From this example, the model will interpret the first line as address 0 with data
equal to the fixed-point value corresponding to 0.98, and so on. Note that the
model will convert the real values to its fixed-point representation using the
specified precision in the OutputPrecision parameter, and arithmetic type as
specified in the ArithType parameter.

« if ramFileFormat = HEX, an example of such a file would be:
Ox7f
0x06
0x08

From this example, the model will interpret the first line as address 0 with data
equal to 0x7f, and so on.
4, The Depth parameter specifies the number of words in the dual-port RAM.
5. For general information regarding numeric fixed-point DSP functions, refer to
Numeric Fixed-Point DSP Components (numeric).

287



Advanced Design System 2011.01 - Numeric Components

DPRamSyn

" g,

-\.'ll'.u
. 4

Description: Dual-Port RAM
Library: Numeric, Fixed-Point DSP
Class: SDFDPRamSyn

Derived From: SDFHPFix

Parameters
Name Description Default Type
OutputPrecision |precision of the output in bits 2.14 precision
ArithType arithmetic type of output: TWOS_COMPLEMENT, UN_SIGNED TWOS_COMPLEMENT |enum
Depth size of (number of words in) RAM 16 int
ramFile name of file containing initial RAM values (optional) filename
(represented in hex data format in file)
Pin Inputs
Pin Name Description Signal
Type
1 |AddrR |input read address fix
2 |AddrW |input write address fix
3 |Data |input data fix
4 |WE write enable input: if low, then the input data is written to the RAM location specified (fix
by AddrWw.
Pin Outputs

Pin [Name |Description Signal Type
5 1Q output data [fix

Notes/Equations

1. DPRamSyn models a dual-port RAM. Data in the RAM can be initialized by specifying
the file name in the ramFile parameter.

2. The path name for ramFile can be specified in several ways: one is to just specify the
file name, for example ramFile = foo, which is assumed to be located within the
current workspace data directory; another is by specifying the absolute path, as in
ramFile = /usr/user_name/foo; or, the environmental variables can also be used to
set the file path name, for example ramFile = $ENV_FOO/foo, where ENV_FOO is an
environmental variable.

3. The bitwidths and arithmetic type of the output data are defined by the device
parameters. The size of the RAM is specified by the Depth parameter. An example file
format is:

288



Advanced Design System 2011.01 - Numeric Components
0x01
Oxff
Oxca

and so on.

4, The data format in the file is assumed to be right-justified.

5. OutputPrecision specifies the fixed-point precision format of the output. For example,
if OutputPrecision = 1.15, 1 bit is used for representing the integer part of the
output, and 15 bits are used to represent the fractional portion of the output.

6. For general information regarding numeric fixed-point DSP functions, refer to
Numeric Fixed-Point DSP Components (numeric).

289



Advanced Design System 2011.01 - Numeric Components

DPSKSyn

3
Z precn L .
LI ]

DPSK

Description: Differential BPSK Encoder
Library: Numeric, Fixed-Point DSP
Class: SDFDPSKSyn

Derived From: SDFHPFix

Parameters

Name Description Default Type

Width |bit width of encoder outputs |8 int

Pin Inputs

Pin [Name |Description Signal Type
1 |Data fix

2 |Clock |Clock input - optional control pin fix

3 |Set Asynchronous set/reset input — optional control pin [fix

Pin Outputs

Pin [Name |Description Signal Type

4

Result fix

Notes/Equations

1. The output signal Result of the DPSK encoder is a twos-complement fixed-point

number with 1 sign bit and (Width-1) fractional bits.

The 1-bit input data is clocked (positive edge triggered) into a 2-deep FIFO buffer.
Values of the 2-deep FIFO buffer are XORed together to get the differential output bit
result. A resulting bit value of 1 (after the XOR operation on the 2 data bits in the
FIFO buffer) is mapped to the most positive-valued fixed-point number that can be
represented by 1 sign bit and (Width-1) fractional bits. Conversely, a resulting bit
value of 0 is mapped to the next-to-most negative-valued fixed-point number that
can be represented by 1 sign bit and (Width-1) fractional bits.

This ensures that the positive and negative valued outputs of the model have the
same magnitude.

Assertion of the Set input (a low value, i.e. 0) will clear the values of the FIFO
buffers.

For example, with Width = 8, with an input bit sequence of 0 1 (with 0 being older,
and 1 being the most recent), and assuming that initially the encoder is reset, the
following will result:

« first input bit 0 will result in the XOR output of 0 © = 0, which maps to 10000001
« second input bit 1 will result in the XOR output of 1 9 = 1, which maps to

290



Advanced Design System 2011.01 - Numeric Components
01111111
2. For general information regarding numeric fixed-point DSP functions, refer to
Numeric Fixed-Point DSP Components (numeric).

291



Advanced Design System 2011.01 - Numeric Components

DualNCOSyn

3 |4
vy
z_h:,, E Con _.,.E

Description: Dual Channel Numerically Controlled Oscillator
Library: Numeric, Fixed-Point DSP

Class: SDFDualNCOSyn

Derived From: SDFHPFix

Parameters

Name Description Default Type

SetType Mode for Set/Reset control input.: ASYNCHRONOUS, ASYNCHRONOUS enum
SYNCHRONOUS, SET_PIN_NOTUSED

OutWidth Output width of NCO. 10 int

PhaseAccWidth |Width of phase accumulator in NCO. 16 int

PhaseWidth Number of bits used from phase accumulator for sine/cosine table. 8 int

PhaselncrWidth Width of phase increment input. 10 int

Pin Inputs

Pin Name Description Signal Type

1 |Phaselncr fix

2 |Clock Clock input - optional control pin fix

3 |Load Load control input - optional control pin fix

4 |Set Asynchronous set/reset input — optional control pin [fix

Pin Outputs

Pin Name Description |Signal Type
5 |SineOut fix
6 |CosineOut fix

Notes/Equations

1. This model implements a dual-output numerically controlled oscillator (NCO). Given a
phase increment Phaselncr input value, it outputs sine and cosine fixed-point signals
(1 sign bit, (OutWidth-1) fractional bits twos-complement) with a frequency
proportional to the value of the Phaselncr input.

2. When the Load input is asserted by bringing it high (a value of 1), the Phaselncr
input data is loaded into an internal phase increment register in the NCO model. The
input phase increment value in Phaselncr is interpreted within the model as an
unsigned fixed-point number (with PhaselncrWidth integer bits, and no fractional
bits).

3. The model contains a phase accumulator (of bitwidth PhaseAccWidth) that adds the
value in the phase increment register to the previous phase accumulator value. The

292



Advanced Design System 2011.01 - Numeric Components

result of the phase accumulator (actually the most significant PhaseWidth bits of the
phase accumulator) is used as an index to a sine/cosine look-up table that outputs
the sine and cosine values corresponding to the current phase accumulator value.
The output sine and cosine signals SineOut, CosineOut are represented as twos-
complement, 1-sign bit, (OutWidth —1) fractional bits, fixed-point numbers.

4, Assertion of the Reset input by bringing it low (a value of 0) will clear the NCO phase
increment register and the phase accumulator.

Internal Structure of Dual-Output NCO Model

Clock
¥ SineiCosine Facm-SineOut
Phaselno ——m-| IMC N . ACC ——wd LoDk
REG Rl ) REG ~ )
Table e COSinECILE
Load
Set

5. For general information regarding numeric fixed-point DSP functions, refer to
Numeric Fixed-Point DSP Components (numeric).

293



Advanced Design System 2011.01 - Numeric Components

ent i
|_.,;M. 2 1n0 _.,5

Description: General Finite Impulse Response (FIR) Filter
Library: Numeric, Fixed-Point DSP

Class: SDFFIRSyn

Derived From: SDFHPFix

Parameters

Name Description Default Type

OutputPrecision |precision of the output in bits 2.14 precision

ArithType arithmetic type of output: TWOS_COMPLEMENT, UN_SIGNED TWOS_COMPLEMENT |enum

NumOfTaps Number of taps in FIR filter. 1 int

CoefPrecision |Precision of the coefficients in the coefficient file. 2.14 precision

DataPrecision |Precision of the DataFeedThru output (used in cascading FIR |2.14 precision
filters).

CoefFile File containing FIR coefficient values. filename

CoefFileFormat |Format of FIR Coefficients file.: REAL, HEX HEX enum

Pin Inputs

Pin [Name Description Signal Type

1 |Dataln Data input fix

2 |Clock |Clock input — optional control pin fix

3 |[Set Asynchronous set/reset input — optional control pin |fix

Pin Outputs

Pin Name Description Signal Type

4 |Result FIR result output (with precision OutputPrecision) fix

5 |DataFeedThru |Data output (with precision DataPrecision = precision of Dataln input) fix

Notes/Equations

1. This model is a FIR (finite impulse response) filter model. It implements a general
parallel FIR structure and retains full precision internally when computing filter output
values. The only quantization done is at the Result output.

Internal Structure of FIR Model

294



Advanced Design System 2011.01 - Numeric Components

Clock, | i !
Feset ¥ E
I
Cadn—ml REG w| REG w| REG | == = —wt REG TsDataFeedThru
2%, a5 l: Result

. The Result output of the FIR model is the final result of the FIR filtering done within
the model, and quantized to the precision specified by OutputPrecision.

. Data from the Dataln input is clocked into the internal data registers of the FIR
model upon the positive edge transitions of the Clock input if the Clock pin is
connected. If the Clock pin is not connected, data is shifted into the internal data
registers at every sample step in the simulator.

. The 1-bit Reset input pin is asserted by bring it low (value of 1), which will clear all
internal data registers.

. The DataFeedThru output of the FIR model is the output of the oldest data in the
internal data registers.

The designer can use this output to feed the next stage of a FIR filter model in order
to create a cascade of FIR filter models. By cascading sections of FIR cores, the
designer can build a larger order FIR filter than the maximum for just one FIR core.
. The filter tap coefficients of the FIR filter are defined in the file as specified in the
CoefFile parameter. The format of the file is specified by the CoefFileFormat
parameter; tap coefficients can be specified as REAL or HEX values. The tap
coefficients are specified as a column of values in the file. The Oth tap filter
coefficient is the value on the first line of the filter tap coefficient file, the 1th tap
filter coefficient corresponds to the value on the second line, the 2th tap filter
coefficient corresponds to the value on the third line, and so on.

Consider the following examples:

« If CoefFileFormat = REAL, which specifies that the filter tap coefficient file
contains real values for the filter tap coefficients, an example of such a file
would be:

0.98
0.24
0.12
0.05
-0.13
0.21

« If CoefFileFormat = HEX which specifies that the filter tap coefficient file
contains hex values for the filter tap coefficients, an example of such a file would
be:

Ox7f
0x06
0x02
0x8f
0x07
0x08

295



Advanced Design System 2011.01 - Numeric Components

7. The NumOfTaps parameter specifies the humber of tap coefficients to be read from
the file specified by CoefFile.

o If NumOfTaps is assigned a value that is less than the taps value provided in
CoefFile, only the first NumOfTaps coefficients will be picked from the file.

o If NumOfTaps is greater than the taps provided, the rest of the taps will be
padded with 0.

8. The CoefPrecision parameter specifies the precision of the filter tap coefficients, that
is, the number of integer bits (including the sign bit) and the number of fractional
bits to be used to represent the filter tap coefficients.

9. For general information regarding numeric fixed-point DSP functions, refer to
Numeric Fixed-Point DSP Components (numeric).

296



Advanced Design System 2011.01 - Numeric Components

FixedGainSyn

TN

Description: Fixed Gain

Library: Numeric, Fixed-Point DSP
Class: SDFFixedGainSyn

Derived From: SDFHPFix

Parameters

Name Description Default Type

RoundFix fixed-point computations, assignments, and data type TRUNCATE enum
conversions option: TRUNCATE, ROUND

OutputPrecision |precision of the output in bits 2.14 precision

ArithType arithmetic type of output: TWOS_COMPLEMENT, UN_SIGNED TWOS_COMPLEMENT lenum

OvflowType overflow characteristic for device: WRAPPED, SATURATE WRAPPED enum

Gain Gain of device specified as a real value. 1.0 real

GainPrecision |Precision of the gain parameter. 2.14 precision

Pin Inputs

Pin [Name |Description Signal Type
1 |Data fix
Pin Outputs

Pin [Name |Description Signal Type
2 |Result fix

Notes/Equations

1. FixedGainSyn models a gain block that multiplies the input value by the specified
Gain (quantized by GainPrecision) and outputs the result at the specified
OutputPrecision.

2. OutputPrecision specifies the fixed-point precision format of the output: if
OutputPrecision = 1.15, 1 bit is used to represent the integer part of the output, and
15 bits are used to represent the fractional portion of the output.

3. For general information regarding numeric fixed-point DSP functions, refer to
Numeric Fixed-Point DSP Components (numeric).

297



Advanced Design System 2011.01 - Numeric Components

FixToFloatSyn

F %

Description: Fixed-Point to Floating-Point
Library: Numeric, Fixed-Point DSP

Class: SDFFixToFloatSyn

Derived From: SDFHPFix

Pin Inputs

Pin [Name Description Signal Type

1 |Data |Input fix fix
type
Pin Outputs

Pin [Name |Description Signal Type
2 |Result |Output float real

type
Notes/Equations
1. FixToFloatSyn converts a fixed-point input to a floating-point (real) output.

2. For general information regarding numeric fixed-point DSP functions, refer to
Numeric Fixed-Point DSP Components (numeric).

298



Advanced Design System 2011.01 - Numeric Components

FloatToFixSyn

Description: Floating-Point to Fixed-Point
Library: Numeric, Fixed-Point DSP

Class: SDFFloatToFixSyn

Derived From: SDFHPFix

Parameters

Name Description Default Type

RoundFix fixed-point computations, assignments, and data type TRUNCATE enum
conversions option: TRUNCATE, ROUND

OutputPrecision |precision of the output in bits 2.14 precision

ArithType arithmetic type of output: TWOS_COMPLEMENT, UN_SIGNED TWOS_COMPLEMENT lenum

OvflowType overflow characteristic for device: WRAPPED, SATURATE WRAPPED enum

Pin Inputs

Pin [Name |Description Signal Type

1 |Data |Input float real
type
Pin Outputs

Pin [Name Description |Signal Type

2 |Result |Output fix fix
type

Notes/Equations

1. FloatToFixSyn converts a floating-point (real) input to a fixed-point output. It
quantizes by rounding and it saturates upon overflow.

2. OutputPrecision specifies the fixed-point precision format of the output. For example,
if OutputPrecision = 1.15, 1 bit is used for representing the integer part of the
output, and 15 bits are used to represent the fractional portion of the output.

3. For general information regarding numeric fixed-point DSP functions, refer to
Numeric Fixed-Point DSP Components (numeric).

299



Advanced Design System 2011.01 - Numeric Components

FSMSyn

: U—.

o i —pd
1 —foera sai - "F‘ﬂ

4

Description: Mealy Finite State Machine (FSM)
Library: Numeric, Fixed-Point DSP

Class: SDFFSMSyn

Derived From: SDFHPFix

Parameters

Name Description Default Type

fsmFile File containing Mealy FSM definition user_defined.fsm [filename

InputWidth Bit width of data input of Mealy FSM 1 int

StateWidth Bit width of state register of Mealy FSM 1 int

OutputWidth Bit width of output of Mealy FSM 1 int

fsmFileFormat Format of Mealy FSM definition file: HEX, OCTAL, HEX enum
DECIMAL

Depth Number of row entries in FSM definition file 1 int

ResetStateVal |Reset State Value 0 int

DefaultStateVal |Default State Value 0 int

DefaultOutVal |Default Output Value 0 int

Pin Inputs

Pin Name Description Signal Type

1 |Data fix

2 |Clock |Clock input — optional control pin fix

3 |Reset |Asynchronous set/reset input - optional control pin [fix
Pin Outputs

Pin [Name |Description Signal Type
4  |Result fix
5 |OutState fix

Notes/Equations

1. This model implements a Mealy finite state machine. The state transitions and output
values of the Mealy FSM are defined in the file specified in the fsmFile parameter. The
format of the entries within the Mealy FSM definition file can be hex (0x01FE, for
example), octal (016, for example), or decimal (230, for example).

Each line in the file contains the following entries separated by at least a space: the
first entry is the input data value; the second entry is the present state value; the
third entry is the next state value; the final entry is the output value. Thus, each line

300



Advanced Design System 2011.01 - Numeric Components
in the FSM definition file should look like:

input_data present_state next_state output
Consider the example of a Mealy FSM definition file entries:
0x01 0x00 0x01 Ox1
0x00 0x00 0x00 0x0
0x01 0x01 0x02 0x0
0x00 0x01 0x01 Ox1

e The first line in the example file specifies that given an input of 0x01, and a
present state of 0x00, the next state of the FSM will be 0x01, and the output is
0x1.

e The second line specifies that given an input of 0x00, and a present state of
0x00, the next state of the FSM will be 0x00, and the output is 0x0.

o The third line specifies that given an input of 0x01, and a present state of 0x01,
the next state of the FSM will be 0x02, and the output is 0x0. It should be clear
how the definition file is interpreted by the model from this example.

Any input and state combinations that are not covered by the Mealy FSM
definition file will be covered by the default state and output values as specified
in model parameters DefaultStateVal and DefaultOutVal.
The state of the Mealy FSM can be initialized to a known reset state by asserting
the Reset input (by giving it a low value of 0) which will set the state of the
Mealy FSM to the value specified in model parameter ResetStateVal.
The values for parameters DefaultStateVal, DefaultOutVal, and ResetStateVal
can be specified in decimal form (for example, DefaultOutVal = 15), or in hex
form (for example, DefaultStateVal = 0x001).

2. For general information regarding numeric fixed-point DSP functions, refer to

Numeric Fixed-Point DSP Components (numeric).

301



Advanced Design System 2011.01 - Numeric Components

GainSyn

TN

Description: Gain

Library: Numeric, Fixed-Point DSP
Class: SDFGainSyn

Derived From: SDFHPFix

Parameters
Name Description Default Type
RoundFix fixed-point computations, assignments, and data type TRUNCATE enum
conversions option: TRUNCATE, ROUND
OutputPrecision |precision of the output in bits 2.14 precision
ArithType arithmetic type of output: TWOS_COMPLEMENT, UN_SIGNED TWOS_COMPLEMENT lenum
OvflowType overflow characteristic for device: WRAPPED, SATURATE WRAPPED enum
Gain gain of device specified as a real value. It is converted to the [1.0 real
precision of GainPrecision of ArithType arithmetic
GainPrecision |precision of gain in bits and precision of accumulation. When |2.14 precision
the gain value extends outside of the precision, the overflow
type is called
Pin Inputs

Pin /Name Description Signal Type
1 |Data fix
Pin Outputs

Pin /Name Description Signal Type
2 |Result fix

Notes/Equations

1. GainSyn models a gain block that multiplies the input value by the specified Gain
(quantized by GainPrecision) and outputs the result at the specified OutputPrecision.

2. OutputPrecision specifies the fixed-point precision format of the output: if
OutputPrecision = 1.15, 1 bit is used to represent the integer part of the output, and
15 bits are used to represent the fractional portion of the output.

3. For general information regarding numeric fixed-point DSP functions, refer to
Numeric Fixed-Point DSP Components (numeric).

302



Advanced Design System 2011.01 - Numeric Components

IntegratorSyn

b

P

5

sad res

vy

aong
8 Gl

Description: Integrator

Library: Numeric, Fixed-Point DSP
Class: SDFIntegratorSyn

Derived From: SDFHPFix

Parameters
Name Description Default Type
OutputPrecision |precision of the output in bits 2.14 precision
ArithType arithmetic type of output: TWOS_COMPLEMENT, TWOS_COMPLEMENT enum
UN_SIGNED
Pin Inputs
Pin [Name |Description Signal Type
1 |Data |Data input — Data input which is loaded by asserting Load fix
input
2 |Load |Load input - loads Data into accumulator of integrator fix
3 |Clock |Clock input — optional control pin fix
4 |CE Clock enable input - optional control pin fix
5 |Set Asynchronous set/reset input — optional control pin fix
Pin Outputs

Pin Name Description Signal Type
6 |Result fix

Notes/Equations

1. This model is a first order integrator. It has a transfer function of (1- z "1 ) "1 where z

-1 refers to a unit Clock delay. Physically, the model can be viewed as an adder that
adds the present input Data to the previous output of the adder. The delayed adder
output feedback is achieved by using an internal data register that is clocked by the
positive edge transitions of the Clock 1-bit. In discrete equation form, the equation

defining the model is:

Result = Previous_Result + Data

Internal Structure of Integrator Model

303



Advanced Design System 2011.01 - Numeric Components

_-$ B L ALCC pa—5op BT
" REG T
—n
Load
Clock
Feset
_CE

. The Clock input is optional.

« if it is connected, the model will operate based on the positive edge transitions
of the Clock input.

« if it is not connected, the model will operate as if every sample step of the
simulator is a positive edge transition.

. Assertion of the Reset input by bringing it low (a value of 0) will clear the internal

data register.

. The (optional) CE input is the clock-enable control for the internal data register.

« if it is connected and has a high value (a value of 1), then the internal data
register is enabled and will load its input upon a positive Clock edge.

« if it is not connected, and low (a value of 0) then the clock to the internal data
register is disabled. The internal data register is always enabled when the CE
input is not connected.

. The (optional) Load input is asserted by bring it high (a value of 1).

« if it is asserted, the Data input is loaded into the internal data register.

e if it is unconnected, the Load is never asserted.

. For general information regarding numeric fixed-point DSP functions, refer to

Numeric Fixed-Point DSP Components (numeric).

304



Advanced Design System 2011.01 - Numeric Components

LCounterSyn

vy

Description: Loadable Binary Counter
Library: Numeric, Fixed-Point DSP
Class: SDFLCounterSyn

Derived From: SDFHPFix

Parameters

Name Description Default Type

Width |size of binary counter 16 int

ValueS |value to which the counter is set when Set is asserted (high) |0 int

Pin Inputs

Pin Name Description Signal

Type
Data |Input data signal fix

2 |Clock |[Clock signal — if connected, counter is positive edge triggered on clock transitions. fix

3 |CE Clock Enable signal - if connected and asserted (high) enables counter when fix
asserted (high).

4 |Up Up/Down control signal - if connected and asserted (high) counter counts up. fix

5 |Set Set/Reset control signal - if connected and asserted (low) counter resets fix

6 |Load |Load control signal - if connected and asserted (low) counter loads Data input. fix

Pin Outputs

Pin Name Description Signal Type

7 Q Counter output signal - parallel fix
data.

Notes/Equations

1. LCounterSyn is positive-edge clock triggered when the count enabled pin is asserted
(high).

2. The control pins are optional-these do not have to be connected.

3. ValueS can be specified in hex (0x prefix), octal (0 prefix),
binary (0b prefix), or decimal (without a 0 prefix).
For example, to specify a ValueS of decimal value 31, set
ValueS = 31 (decimal), ValueS = 0x1F (hex), ValueS = 037 (octal), or ValueS =
Ob11111 (binary).

4. For general information regarding numeric fixed-point DSP functions, refer to
Numeric Fixed-Point DSP Components (numeric).

305



Advanced Design System 2011.01 - Numeric Components

306



Advanced Design System 2011.01 - Numeric Components

MultRegSyn

.'--., T

Description: Registered Multiplier
Library: Numeric, Fixed-Point DSP
Class: SDFMultRegSyn

Derived From: SDFHPFix

Parameters
Name Description Default Type
RoundFix fixed-point computations, assignments, and data type TRUNCATE enum
conversions option: TRUNCATE, ROUND

OutputPrecision |precision of the output in bits 2.14 precision
ArithType arithmetic type of output: TWOS_COMPLEMENT, UN_SIGNED TWOS_COMPLEMENT enum
OvflowType overflow characteristic for device: WRAPPED, SATURATE WRAPPED enum
Latency Latency in clock cycles for multiplier result. 1 int
Pin Inputs
Pin [Name |Description Signal Type
1 A input A fix
2 B input B fix
3 |Clock |Clock input — optional control pin fix
4 |CE Clock enable input — optional control fix

pin
Pin Outputs
Pin [Name |Description Signal Type
5 |Result Registered multiplier fix

output

Notes/Equations

1. This model is a registered adder. It calculates the multiplication of its A and B data
inputs (A x B) and registers its output Result such that it has the specified precision
as set in the OutputPrecision parameter.

2. The Clock input is optional:

« if it is connected, the model will operate based on the positive edge transitions
of the Clock input

« if it is not connected, the model will operate as if every sample step of the
simulator is a positive edge transition.

3. Assertion of the Reset input by bringing it low (a value of 0) will clear the output data
register.

307



Advanced Design System 2011.01 - Numeric Components
4. The (optional) CE input is the clock-enable control for the output data register.
« if it is connected and has a high value (a value of 1), the output data register is
enabled and will load the addition result upon a positive Clock edge.
« if it is connected and low (a value of 0) the clock to the output data register is
disabled.
« if the CE input is not connected, the output data register is always enabled.
5. For general information regarding numeric fixed-point DSP functions, refer to
Numeric Fixed-Point DSP Components (numeric).

308



Advanced Design System 2011.01 - Numeric Components

MultSyn

_'..3

|FL

Description: Multiplier

Library: Numeric, Fixed-Point DSP
Class: SDFMultSyn

Derived From: SDFHPFix

Parameters

Name Description Default Type

RoundFix fixed-point computations, assignments, and data type TRUNCATE enum
conversions option: TRUNCATE, ROUND

OutputPrecision |precision of the output in bits 2.14 precision

ArithType arithmetic type of output: TWOS_COMPLEMENT, UN_SIGNED TWOS_COMPLEMENT lenum

OvflowType overflow characteristic for device: WRAPPED, SATURATE WRAPPED enum

Pin Inputs

Pin [Name |Description Signal Type

1 A fix
2 B fix
Pin Outputs

Pin [Name |Description Signal Type
3 |Result fix

Notes/Equations

1. MultSyn multiplies two data inputs.

2. OutputPrecision specifies the fixed-point precision format of the output. For example,
if OutputPrecision = 1.15, 1 bit is used for representing the integer part of the
output, and 15 bits are used to represent the fractional portion of the output.

3. For general information regarding numeric fixed-point DSP functions, refer to
Numeric Fixed-Point DSP Components (numeric).

309



Advanced Design System 2011.01 - Numeric Components

Mux2Syn

Description: 2-input Multiplexer
Library: Numeric, Fixed-Point DSP
Class: SDFMux2Syn

Derived From: SDFHPFix

Parameters

Name Description Default Type

Width |Width of an input 8 int
bus.

Pin Inputs

Pin |Name |Description Signal Type

1 |Data0 fix
2 |Datal fix
3 |Sel fix
Pin Outputs

Pin Name Description Signal Type
4 |Result fix

Notes/Equations

1. This model is a 2-input multiplexer. It selects input DataO or Datal depending on the
value of its Sel input. If the Sel input value is 0 (low value), DataO is assighed to its
output Result; if the Sel input value is 1 (high value), Datal is assigned to its output
Result.

2. For general information regarding numeric fixed-point DSP functions, refer to
Numeric Fixed-Point DSP Components (numeric).

310



Advanced Design System 2011.01 - Numeric Components

Mux3Syn

Description: 3-input Multiplexer
Library: Numeric, Fixed-Point DSP
Class: SDFMux3Syn

Derived From: SDFHPFix

Parameters

Name Description Default Type

Width |Width of an input 8 int
bus.

Pin Inputs

Pin [Name |Description Signal Type

1 |Data0 fix
2 |Datal fix
3 |Data2 fix
4 |Sel0 fix
5 |Sell fix
Pin Outputs

Pin [Name |Description Signal Type
6 |Result fix

Notes/Equations

1. This model is a 3-input multiplexer. It selects one of 3 inputs DataO, or Datal or
Data2 depending on the value of its Sel0 and Sell inputs given in Data Selection,

Sell Sel0 Result
0 0 Data0

0 1 Datal
1 0 Data2
1 1 invalid input

2. For general information regarding numeric fixed-point DSP functions, refer to
Numeric Fixed-Point DSP Components (numeric).

311



Advanced Design System 2011.01 - Numeric Components

Mux4Syn

Description: 4-input Multiplexer
Library: Numeric, Fixed-Point DSP
Class: SDFMux4Syn

Derived From: SDFHPFix

Parameters

Name Description Default Type

Width |Width of an input 8 int
bus.

Pin Inputs

Pin [Name |Description Signal Type

1 |Data0 fix
2 |Datal fix
3 |Data2 fix
4 |Data3 fix
5 [Sel0 fix
6 |[Sell fix
Pin Outputs

Pin [Name |Description Signal Type
7 |Result fix

Notes/Equations

1. This model is a 4-input MUX; it selects input Data0O, Datal, Data2, or Data3 based on
the values of inputs Sel0 and Sell given in Data Selection.

Sell Sel0 Result
0 0 Data0

0 1 Datal
1 0 Data2
1 1 Data3

2. For general information regarding numeric fixed-point DSP functions, refer to
Numeric Fixed-Point DSP Components (numeric).

312



MuxSyn

-

Description: Mux

Advanced Design System 2011.01 - Numeric Components

Library: Numeric, Fixed-Point DSP
Class: SDFMuxSyn

Derived From: SDFHPFix

Parameters

Name Description

Default Type

Width |size of bus segment within the input bus 8 int

Size number of bus segments within the input 2 int
bus

WidthS |bit width of select control input 1 int

Pin Inputs

Pin Name Description Signal Type

1 Data
2 |Sel
Pin Outputs

fix
fix

Pin Name Description Signal Type

3 Result

Notes/Equations

1. The input bus is composed of Size number of smaller bus segments. Each bus
segment within the input bus is of bitwidth Width. MuxSyn selects one of the Size bus
segments and outputs it as result. The sel input is used to control which bus segment
is selected. A value of 0 in sel will select the least significant bus segment; a value of

fix

1 will select the next-to-least-significant bus segment, and so on.

Width = 8, Size = 2, WidthS = 1

g
zel=1 —f—

sel=l —F—
g

LsH

doia reauly

ML

313



Advanced Design System 2011.01 - Numeric Components
2. For general information regarding numeric fixed-point DSP functions, refer to
Numeric Fixed-Point DSP Components (numeric).

314



Advanced Design System 2011.01 - Numeric Components

Nand2Syn

o

Description: 2-input NAND
Library: Numeric, Fixed-Point DSP
Class: SDFNand2Syn

Derived From: SDFHPFix

Parameters

Name Description Default Type
Width |size of bus segment within the input bus |8 int
Pin Inputs

Pin [Name |Description Signal Type

1 A fix
2 B fix
Pin Outputs

Pin |[Name |Description Signal Type
3 |Result fix

Notes/Equations

1. This model is a 2-input NAND gate, which takes a bitwise NAND of inputs A and B
(both of bitwidth Width) and outputs the results, that is, Result = A NAND B.

2. For general information regarding numeric fixed-point DSP functions, refer to
Numeric Fixed-Point DSP Components (numeric).

315



Advanced Design System 2011.01 - Numeric Components

Description: Numerically Controlled Oscillator
Library: Numeric, Fixed-Point DSP

Class: SDFNCOSyn

Derived From: SDFHPFix

Parameters
Name Description Default Type
SetType Mode for Set/Reset control input.: ASYNCHRONOUS, ASYNCHRONOUS enum

SYNCHRONOUS, SET_PIN_NOTUSED
OutWidth Output width of NCO. 10 int
PhaseAccWidth |Width of phase accumulator in NCO. 16 int
PhaseWidth Number of bits used from phase accumulator for sine/cosine table. 8 int
PhaselncrWidth Width of phase increment input. 10 int
Pin Inputs
Pin Name Description Signal Type
1 |Phaselncr fix
2 |Clock Clock input - optional control pin fix
3 |Load Load control input - optional control pin fix
4 |Set Asynchronous set/reset input — optional control pin fix
5 |SineOrCosine SineOrCosine — controls whether sine or cosine is fix

output

Pin Outputs

Pin [Name |Description Signal Type
6 |Out fix

Notes/Equations

1. This model implements an Numerically Controlled Oscillator (NCO). Given a phase
increment Phaselncr input value, it outputs a sine or cosine fixed-point signal (1 sign
bit, (OutWidth-1) fractional bits twos-complement) with a frequency proportional to
the value of the Phaselncr input.

When the Load input is asserted by bring it high (a value of 1), the Phaselncr input
data is loaded into an internal phase increment register in the NCO model. The input
phase increment value in Phaselncr is interpreted within the model as an unsigned
fixed-point number (with PhaseIncrWidth integer bits, and no fractional bits).

The model contains a phase accumulator (of bitwidth PhaseAccWidth) which adds the
value in the phase increment register to the previous phase accumulator value. The

316



Advanced Design System 2011.01 - Numeric Components
result of the phase accumulator (actually the most significant PhaseWidth bits of the
phase accumulator) is used as an index to a sine/cosine look-up table that outputs a
sine or cosine value corresponding to the current phase accumulator value.

Internal Structure of NCO model

Cloc | |
¥ SinefCosing
[N ACC
F'haselncr*n. REG %h—%b— FEG - \\ » l-l-_gglke'-lp A\I'rc”-”
Load
Set
Sineon”osine

. The output sine or cosine signal in Out is represented as a twos-complement, 1-sign
bit, (OutWidth-1) fractional bits, fixed-point number.
. The 1-bit control input SineOrCosine is optional. It is used to determine whether a
sine or cosine signal is evaluated by the model.
« if the SineOrCosine pin is not connected, the default output of the model is a
sine signal.
« if the SineOrCosine pin is connected: a low value (corresponding to 0) will cause
the model to output a cosine signal; conversely, a high value (corresponding to
1) will cause the model to output a sine signal.
. Assertion of the Reset input by bringing it low (a value of 0) will clear the NCO phase
increment register and the phase accumulator.
. For general information regarding numeric fixed-point DSP functions, refer to
Numeric Fixed-Point DSP Components (numeric).

317



Advanced Design System 2011.01 - Numeric Components

Nor2Syn

1

Description: 2-input NOR
Library: Numeric, Fixed-Point DSP
Class: SDFNor2Syn

Derived From: SDFHPFix

Parameters

Name Description Default Type
Width |size of bus segment within the input bus |8 int
Pin Inputs

Pin [Name |Description Signal Type

1 A fix
2 B fix
Pin Outputs

Pin |[Name |Description Signal Type
3 |Result fix

Notes/Equations

1. This model is a 2-input NOR gate. It takes a bitwise NOR of inputs A and B, (both of
bitwidth Width) and outputs the results, that is, Result = A NOR B.

2. For general information regarding numeric fixed-point DSP functions, refer to
Numeric Fixed-Point DSP Components (numeric).

318



Advanced Design System 2011.01 - Numeric Components

NotSyn

R

Description: NOT

Library: Numeric, Fixed-Point DSP
Class: SDFNotSyn

Derived From: SDFHPFix

Parameters

Name Description Default Type
Width |size of bus segment within the input bus |8 int
Pin Inputs

Pin [Name |Description Signal Type
1 Data fix
Pin Outputs

Pin [Name |Description Signal Type
2 |Result fix

Notes/Equations

1. This model is a NOT gate. It takes a bitwise NOT of input Data and outputs the
results, that is, Result = NOT(Data).

2. For general information regarding numeric fixed-point DSP functions, refer to
Numeric Fixed-Point DSP Components (numeric).

319



Advanced Design System 2011.01 - Numeric Components

OQPSKSyn

i

2 b o — g

1 o L
—P, CHOPSK]

Fl

Description: Offset QPSK Encoder
Library: Numeric, Fixed-Point DSP
Class: SDFOQPSKSyn

Derived From: SDFHPFix

Parameters

Name Description Default Type

Width |bit width of encoder outputs |8 int

Pin Inputs

Pin [Name |Description Signal Type
1 |Datal fix

2 |DataQ fix

3 |Clock fix

4 |Set Asynchronous set/reset input — optional control pin [fix

Pin Outputs

Pin [Name |Description Signal Type
5 |Iout fix
6 |Qout fix

Notes/Equations

1. The output signals of the OQPSK encoder are 2 twos-complement fixed-point
numbers with 1 sign bit and (Width —1) Iout and Qout fractional bits.
The In-phase data input Datal is clocked into an internal register (in the model we
will call dataireg ) on the positive Clock edge, while the Quadrature-phase data input
DataQ is clocked into its internal register (in the model we will call datagreg ) on the
negative Clock edge (that is, a half symbol time later).
Assertion of the Set input (a low value, that is, 0) will clear the values of the internal
data registers.
For each dataireg or datagreg bit value of 1, a mapping to the fixed-point number
(represented by a 1 sign bit and (Width —1) fractional bits) closest to the negative
value of the square root of 1/2 (thatis, —0.7071067811..) is done. Conversely, for
each dataireg or dataqgreg bit value of 0, a mapping to the fixed point number
(represented by a 1 sign bit and (Width —1) fractional bits) closest to the square root
of 1/2 (that is, +0.7071067811..) is done.
For example, with Width = 8, mapping will be done in the following manner.

320



Advanced Design System 2011.01 - Numeric Components
dataireg dataqreg --> Output Iout Output Qout

0 0 --> /01011011 01011011
0 1 --> /01011011 10100101
1 0 --> 10100101 01011011
1 1 --> 10100101 10100101

Note that, with 1 sign bit and 7 fractional bits twos-complement:

e« 01011011 corresponds to 0.7109375
e 10100101 corresponds to —0.7109375
2. For general information regarding numeric fixed-point DSP functions, refer to
Numeric Fixed-Point DSP Components (numeric).

321



Advanced Design System 2011.01 - Numeric Components

Or2Syn

M |

Description: 2-input OR

Library: Numeric, Fixed-Point DSP
Class: SDFOr2Syn

Derived From: SDFHPFix

Parameters

Name Description Default Type
Width |size of bus segment within the input bus |8 int
Pin Inputs

Pin [Name |Description Signal Type

1 A fix
2 B fix
Pin Outputs

Pin |[Name |Description Signal Type
3 |Result fix

Notes/Equations

1. This model is a 2-input OR gate. It takes a bitwise OR of its inputs A and B (both of
bitwidth Width) and outputs the results, that is, Result = A OR B.

2. For general information regarding numeric fixed-point DSP functions, refer to
Numeric Fixed-Point DSP Components (numeric).

322



Advanced Design System 2011.01 - Numeric Components

OrSyn

Description: Bitwise OR

Library: Numeric, Fixed-Point DSP
Class: SDFOrSyn

Derived From: SDFHPFix

Parameters

Name Description Default Type
Width |size of bus segment within input bus 8 int
Size |number of bus segments within input bus |2 int
Pin Inputs

Pin [Name |Description Signal Type
1 |Data fix
Pin Outputs

Pin |[Name |Description Signal Type
2 |Result fix

Notes/Equations

1. The input bus is composed of Size number of smaller bus segments. Each bus
segment within the input bus is of bitwidth Width. OrSyn performs a bitwise OR of
the bus segments resulting in the output result of bitwidth Width. For example, if
Width = 8, Size = 2 means that the input bus is interpreted as having 2 bus
segments, each of bitwidth 8. The output of OrSyn is the bitwise OR of the 2 bus

segments, as illustrated below.

Width = 8, Size = 2

! o

_z
]

2. An example design where two 8-bit signals are ORed together is shown below.

OrSyn Example Design

323



Advanced Design System 2011.01 - Numeric Components

oul . .: oR : .
Lg W[RCE

CrSyn
BuaMergeSyn o
A1 Wid{ h=E
Widlh=18 Slzr=?

For general information regarding numeric fixed-point DSP functions, refer to
Numeric Fixed-Point DSP Components (numeric).

324



Advanced Design System 2011.01 - Numeric Components

PI4DQPSKSyn

EI
A 8
. P ]

Fi4

DPSE 5
atel e

[}

Description: Pi/4 DQPSK Encoder
Library: Numeric, Fixed-Point DSP
Class: SDFPI4DQPSKSyn
Derived From: SDFHPFix

Parameters

Name Description Default Type

Width |bit width of encoder outputs |8 int

Pin Inputs

Pin [Name |Description Signal Type
1 |Datal fix

2 |DataQ fix

3 |Clock fix

4 |Set Asynchronous set/reset input — optional control pin [fix

Pin Outputs

Pin [Name |Description Signal Type
5 |Iout fix
6 |Qout fix

Notes/Equations

1. The 2 output signals of the /4-DQPSK encoder are twos-complement fixed- point
numbers with 1 sign bit and (Width-1) fractional bits Iout and Qout.
In-phase and Quadrature-phase data inputs Datal, DataQ are clocked into internal
registers on the positive Clock edge. Outputs Iout and Qout are rotated in phase
increments that are multiples of /4 (that is, multiples of 45 degrees) depending on
the values of Datal and DataQ. Phase rotations are specified in Phase Rotations.

Input Datal Input DataQ Rotate (Iout, Qout) by

0 0 +MN/4 ( +45 deg)
0 1 —M/4 (—45 deqg)
1 0 +3MN/4 (+135 deg)
1 1 —3M/4 (-135 degq)

Assertion of the Set input (a low value, i.e. 0) will clear the values of the internal
registers of the model and the outputs (Iout, Qout) are set to the fixed point
numbers closest to the value of (sqrt(1/2), sqrt(1/2)), where sqrt(1/2) denotes the
square root of 1/2 (as close as can be represented by 1 sign bit and (Width-1)

325



Advanced Design System 2011.01 - Numeric Components
fractional bits in twos-complement).
2. For general information regarding numeric fixed-point DSP functions, refer to
Numeric Fixed-Point DSP Components (numeric).

326



Advanced Design System 2011.01 - Numeric Components

PSK8Syn

| —pp?

1_'...;,.,. \

8-PSK

Description: 8-PSK Encoder
Library: Numeric, Fixed-Point DSP
Class: SDFPSK8Syn

Derived From: SDFHPFix

Parameters

Name Description Default Type
Width |bit width of encoder outputs |8 int
Pin Inputs

Pin [Name |Description Signal Type
1 Data fix
Pin Outputs

Pin [Name |Description Signal Type
2 |ITout fix
3  |Qout fix

Notes/Equations

1. Output signhals of the 8PSK encoder are 2 twos-complement fixed-point numbers with
1 sign bit and (Width-1) fractional bits, Iout and Qout. The 3-bit input Data is
mapped to the Iout and Qout outputs according to the Data Mapping table below.

Data Mapping

Input Data Iout (real-value) Qout (real-value)

000 value closest to value closest to
+sqrt(1/2) +sqrt(1/2)

001 0.0 1.0 - 2 -(Width-1)

010 -sqrt(1/2) +sqrt(1/2)

011 -1.0 + 2 -(Width-1) 0.0

100 -sqrt(1/2) -sqrt(1/2)

101 0.0 -1.0 + 2 -(width-1)

110 +sqrt(1/2) -sqrt(1/2)

111 1.0 - 2 ~(Width-1) 0.0

For example, with Width = 8, mapping will be done in the following manner:

327



Advanced Design System 2011.01 - Numeric Components

Input Data Iout (twos-compliment binary) Qout (twos-compliment binary)

000 01011011 01011011
001 00000000 01111111
010 10100101 01011011
011 10000001 00000000
100 10100101 10100101
101 00000000 10000001
110 01011011 10100101
111 01111111 00000000

Note that, with 1 sign bit and 7 fractional bits twos-complement:

01011011 corresponds to 0.7109375
10100101 corresponds to -0.7109375

01111111 corresponds to 1.0- 2 ~/

10000001 corresponds to -1.0 + 2 ~/
2. For general information regarding numeric fixed-point DSP functions, refer to
Numeric Fixed-Point DSP Components (numeric).

328



Advanced Design System 2011.01 - Numeric Components

“apsk

Description: QPSK Encoder
Library: Numeric, Fixed-Point DSP
Class: SDFQPSKSyn

Derived From: SDFHPFix

Parameters

Name Description Default Type
Width |bit width of encoder outputs |8 int
Pin Inputs

Pin [Name |Description Signal Type

1 Datal fix
2 |DataQ fix
Pin Outputs

Pin |[Name |Description Signal Type
3 |Iout fix
4 |Qout fix

Notes/Equations

1. The output signals of the QPSK encoder are 2 twos-complement fixed-point numbers
with 1 sign bit and (Width —1) fractional bits, Iout and Qout.
For each Datal or DataQ input bit value of 1, a mapping to the fixed-point number
(represented by a 1 sign bit and (Width —1) fractional bits) closest to the negative
value of the square root of 1/2 (that is, —0.7071067811..) is done. Conversely, for
each Datal or DataQ input bit value of 0 a mapping to the fixed point number
(represented by a 1 sign bit and (Width-1) fractional bits) closest to the square root
of 1/2 (thatis, +0.7071067811..) is done.
For example, with Width = 8, mapping will be done as in the table below.

Input Datal Input DataQ [--> Output Iout Output Qout

0 0 --> 01011011 01011011
0 1 -->101011011 10100101
1 0 --> 10100101 01011011
1 1 --> 10100101 10100101

Note that, with 1 sign bit and 7 fractional bits twos-complement:

e« 01011011 corresponds to 0.7109375
e 10100101 corresponds to —0.7109375

329



Advanced Design System 2011.01 - Numeric Components
2. For general information regarding numeric fixed-point DSP functions, refer to
Numeric Fixed-Point DSP Components (numeric).

330



Advanced Design System 2011.01 - Numeric Components

RamRegSyn

vy

3‘_‘}-'.

Description: Registered Random-Access-Memory (RAM)

Library: Numeric, Fixed-Point DSP
Class: SDFRamRegSyn
Derived From: SDFHPFix

Parameters

Name Description

OutputPrecision |precision of the output in bits

ArithType arithmetic type of output: TWOS_COMPLEMENT,
UN_SIGNED

Depth Number of words in RAM.

ramFile File containing initial RAM values.

ramFileFormat |Format of RAM init file.: REAL, HEX
Pin Inputs

Pin Name Description
1 |Addr |input address

2 |Data |input data

3 |Clock |Clock input — optional control pin

4 |CE Clock enable input — optional control pin

5 |WE write enable input: if low then the input Data
is

Pin Outputs

Pin [Name |Description Signal Type
6 |Q output data [fix

Notes/Equations

1. This model implements a RAM with a registered output.

Signal Type
fix
fix
fix
fix
fix

Default Type
2.14 precision
TWOS_COMPLEMENT lenum

16 int
filename
HEX enum

Given an input address in Addr, and data in Data, the model will write the input Data
into an internal array if WE is asserted by a low value; if WE is not asserted, the

model will put data addressed by Addr onto its output Q.

2. The output of the RAM is registered with a positive edge Clock input.
The clock enable CE control input is optional:
« if it is not connected, the model is always enabled

« if it is connected, it is enabled by a high value in CE.

The initial values in the RAM can be defined in the (optional) file as specified in
the ramFile parameter. The format of the file is specified by the ramFileFormat

331



Advanced Design System 2011.01 - Numeric Components

parameter; initialization values can be specified as REAL or HEX. The address of
each initial data read into the model is the same as the line number of the
corresponding data read from the initialization file.
The initial values are specified as a column of values as in the following
examples.

o If ramFileFormat = REAL which specifies that the RAM initialization file contains
real values, then an example of such a file would be:
0.98
0.24
0.12

From this example, the model will interpret the first line as address 0 with data
equal to the fixed-point value corresponding to 0.98, and so on. Note that the
model will convert the real values to its fixed-point representation using the
specified precision in the OutputPrecision parameter, and arithmetic type as
specified in the ArithType parameter.

o If ramFileFormat = HEX, then an example of such a file would be:
Ox7f
0x06
0x08

From this example, the model will interpret the first line as address 0 with data
equal to 0x7f, and so on.
3. The Depth parameter specifies the number of words in the RAM.
4. For general information regarding numeric fixed-point DSP functions, refer to
Numeric Fixed-Point DSP Components (numeric).

332



Advanced Design System 2011.01 - Numeric Components

Description: RAM

Library: Numeric, Fixed-Point DSP
Class: SDFRamSyn

Derived From: SDFHPFix

Parameters

Name Description Default Type

OutputPrecision |precision of the output in bits 2.14 precision

ArithType arithmetic type of output: TWOS_COMPLEMENT, UN_SIGNED TWOS_COMPLEMENT enum

Depth size of (number of words in) RAM 16 int

ramFile name of file containing initial RAM values (optional) filename
(represented in hex data format in file)

Pin Inputs

Pin Name Description Signal Type

1 |Addr |input address fix

2 |Data |input data fix

3 |WE write enable input: if low then the input Data  |fix
is

Pin Outputs

Pin Name Description Signal Type
4 |Q output data [fix

Notes/Equations

1. RamSyn models the RAM. Data in the RAM can be initialized by specifying the file
name in the ramFile parameter.

2. The path name for ramFile can be specified in several ways: one is to just specify the
file name, for example ramFile = foo, which is assumed to be located within the
current workspace data directory; another is to specify the absolute path, as in
ramFile = /usr/user_name/foo; or, the environmental variables can also be used to
set the file path name, for example ramFile = $ENV_FOO/foo, where ENV_FOOQO is an
environmental variable.

3. The bitwidths and arithmetic type of the output data are defined by the device
parameters. The size of the RAM is specified by the Depth parameter. An example file
format is:
0x01
Oxff

333



Advanced Design System 2011.01 - Numeric Components
Oxca

and so on.

4, The data format in the file is assumed to be right-justified.

5. OutputPrecision specifies the fixed-point precision format of the output. For example,
if OutputPrecision = 1.15, 1 bit is used for representing the integer part of the
output, and 15 bits are used to represent the fractional portion of the output.

6. For general information regarding numeric fixed-point DSP functions, refer to
Numeric Fixed-Point DSP Components (numeric).

334



Advanced Design System 2011.01 - Numeric Components

.l__._:::' e

Description: Data Register
Library: Numeric, Fixed-Point DSP
Class: SDFRegSyn

Derived From: SDFHPFix

Parameters

Name Description Default Type

OutputPrecision |precision of the output in bits 2.14 precision

ArithType arithmetic type of output: TWOS_COMPLEMENT, UN_SIGNED TWOS_COMPLEMENT |enum

ValueS value loaded into the register when the Set control pin is 0 int
asserted

Pin Inputs

Pin |[Name |Description Signal Type

1 |Data |Datainput fix

2 |Clock |Clock input - optional control pin fix

3 |CE Clock enable input - optional control pin fix

4 |Set Synchronous set/reset input - optional control pin [fix

Pin Outputs

Pin |[Name |Description Signal Type

5 1Q Register data output [fix

Notes/Equations

1. RegSyn is positive-edge triggered and latches the input data upon detecting the
positive edge.
2. The control pins are optional; if these are not connected, the defaults will be:
» Clock not connected, the device reverts to a unit-delay register.
o CE connected and high, the input data is latched by the register upon a positive
clock edge.
e CE connected and low (it holds a value of 0), the register output stays the same
and the input data is not latched.
o CE not connected, the clock is enabled by default and the input data is latched
by the register upon a positive clock edge.
« Set connected and low, the register output is set to the value specified by the
parameter ValueS.
e Set connected and high, the register output is not set to ValueS.
e Set not connected, the register output is never set to ValueS.

335



Advanced Design System 2011.01 - Numeric Components

3. OutputPrecision specifies the fixed-point precision format of the output. For example,
if OutputPrecision = 1.15, 1 bit is used for representing the integer part of the
output, and 15 bits are used to represent the fractional portion of the output.

4. ValueS can be specified in hex (0x prefix), octal (0 prefix),
binary (0Ob prefix), or decimal (without a 0 prefix).
For example, to specify a ValueS of decimal value 31, set
ValueS = 31 (decimal), ValueS = 0x1F (hex), ValueS = 037 (octal), or ValueS =
Ob11111 (binary).

5. For general information regarding numeric fixed-point DSP functions, refer to
Numeric Fixed-Point DSP Components (numeric).

336



Advanced Design System 2011.01 - Numeric Components
RomRegSyn

4

¢ |

s 2

LB s

Description: Registered Read-Only-Memory (ROM)
Library: Numeric, Fixed-Point DSP

Class: SDFRomRegSyn

Derived From: SDFHPFix

Parameters

Name Description Default Type

OutputPrecision |precision of the output in bits 2.14 precision

ArithType arithmetic type of output: TWOS_COMPLEMENT, TWOS_COMPLEMENT enum
UN_SIGNED

romFile Filename containing ROM data. filename

romFileFormat [Format of ROM init file.: REAL, HEX HEX enum

Depth Number of words in ROM. 1 int

Pin Inputs

Pin [Name |Description Signal Type

1 |Addr fix

2 |Clock |Clock input — optional control pin fix

3 |CE Clock enable input - optional control pin fix

4 |Set Asynchronous set/reset input — optional control pin [fix
Pin Outputs

Pin /Name Description Signal Type
5 1Q fix

Notes/Equations

1. This model implements a ROM with a registered output. Given an input address in
Addr, the model will put the data addressed by Addr onto output Q.

2. The output of the ROM is registered with a positive edge Clock input.

The clock enable CE control input is optional.
« if it is not connected, the model is always enabled
« if it is connected, it is enabled by a high value in CE.

3. The initial values in the ROM can be defined in the file specified in the romFile
parameter. The format of the file is specified by the romFileFormat parameter; data
can be specified as REAL or HEX values. The address of each data value read into the
model is the same as the line number of the corresponding data read from the file.

4. The values are specified as a column of values as in the following examples.

If romFileFormat = REAL which specifies that the ROM file contains real values, then

337



5.
6.

Advanced Design System 2011.01 - Numeric Components
an example of such a file would be:
0.98
0.24
0.12

From the above file example, the model will interpret the first line as address 0 with
data equal to the fixed point value corresponding to 0.98, etc. Note that the model
will convert the real values to its fixed point representation using the specified
precision in the OutputPrecision parameter, and arithmetic type as specified in the
ArithType parameter.

If romFileFormat = HEX, then an example of such a file would be:

Ox7f

0x06

0x08

From the above file example, the model will interpret the first line as address 0 with
data equal to 0x7f, and so on.

The Depth parameter specifies the number of words in the ROM.

For general information regarding numeric fixed-point DSP functions, refer to
Numeric Fixed-Point DSP Components (numeric).

338



Advanced Design System 2011.01 - Numeric Components

RomSyn

1 _plicsc  of—pp?

Description: ROM

Library: Numeric, Fixed-Point DSP
Class: SDFRomSyn

Derived From: SDFHPFix

Parameters

Name Description Default Type

OutputPrecision |precision of the output in bits 2.14 precision

ArithType arithmetic type of output: TWOS_COMPLEMENT, UN_SIGNED TWOS_COMPLEMENT |enum

romFile name of file containing ROM values (represented in hex data filename
format in file)

Depth size of (number of words in) ROM 1 int

Pin Inputs

Pin [Name |Description Signal Type
1 |Addr fix
Pin Outputs

Pin [Name |Description Signal Type
2 Q fix

Notes/Equations

1. RomSyn reads the specified file of ASCII hex values and stores them in a linear array
to model the ROM.

2. The path name for romFile can be specified in several ways: one is to just specify the
file name, for example romFile = foo, which is assumed to be located within the
current workspace data directory; another is to specify the absolute path, as in
romFile = /usr/user_name/foo; or, the environmental variables can also be used to
set the file path name, for example romFile = $ENV_FOO/foo, where ENV_FOO is an
environmental variable.

3. The input address value is used as an index into the array. An example file format:
0xO0ffOa
0x0bcd9

and so on.
4. The data format in the file is assumed to be right-justified.
5. OutputPrecision specifies the fixed-point precision format of the output. For example,
339



Advanced Design System 2011.01 - Numeric Components
if OutputPrecision = 1.15, 1 bit is used for representing the integer part of the
output, and 15 bits are used to represent the fractional portion of the output.
. For general information regarding numeric fixed-point DSP functions, refer to
Numeric Fixed-Point DSP Components (numeric).



Advanced Design System 2011.01 - Numeric Components

SerialFIRSyn

3 b |

Description: Serial Finite Impulse Response (FIR) Filter
Library: Numeric, Fixed-Point DSP

Class: SDFSerialFIRSyn

Derived From: SDFHPFix

Parameters

Name Description Default Type

OutputPrecision |precision of the output in bits 2.14 precision

ArithType arithmetic type of output: TWOS_COMPLEMENT, TWOS_COMPLEMENT enum
UN_SIGNED

NumOfTaps Number of taps in FIR filter. 6 int

CoefPrecision |Precision of the coefficients in the coefficient file. 2.14 precision

DataPrecision |Precision of the input data. 2.14 precision

CoefFile File containing FIR coefficient values. filename

CoefFileFormat |Format of FIR Coefficients file.: REAL, HEX HEX enum

Pin Inputs

Pin Name Description Signal Type

1 |Dataln Data input fix

2 |BitClock |Bit Clock input — Bit-rate clock fix

3 |DataClock Data Clock input - input sample rate clock fix

4 |Set Asynchronous set/reset input — optional control pin [fix

Pin Outputs

Pin |[Name |Description Signal Type

5 |Result [FIR result output (with precision fix

OutputPrecision)

Notes/Equations

1. This model is a bit-serial finite impulse response (FIR) filter model. It implements a
bit-serial FIR structure and retains full precision internally when calculating filter
output values.

The only quantization done is at the Result output of the model.

2. The Result output of the bit-serial FIR model is the final result of the FIR filtering
done within the model, and quantized to the precision specified by OutputPrecision.

3. Data from Dataln input is clocked into the internal data registers of the bit-serial FIR
model upon the positive edge transitions of the DataClock input.

4. The BitClock input is used to simulate the bit-serial nature of the FIR filter; it clocks

341



7.

8.

Advanced Design System 2011.01 - Numeric Components
the result of the FIR filter into a FIFO buffer of depth equal to the total number of bits
in Dataln (as specified by the DataPrecision parameter). If the total number of bits in
DataPrecision is equal to W, there is a delay equal to W BitClock positive edges
before the FIR filter output is sent to Result.

. The 1-bit Reset input pin is asserted by bring it low (a value of 1), which will clear all

the internal data registers.

. The filter tap coefficients of the bit-serial FIR filter is defined in the file specified in

the CoefFile parameter. The format of the file is specified by the CoefFileFormat
parameter; tap coefficients can be specified as REAL or HEX values. The tap
coefficients are specified as a column of values in the file. The Oth tap filter
coefficient is the value on the first line of the filter tap coefficient file; the 1th tap
filter coefficient corresponds to the value on the second line; the 2th tap filter
coefficient corresponds to the value on the third line, and so on.

Consider the following examples.

« If CoefFileFormat = REAL, which specifies that the filter tap coefficient file
contains real values for the filter tap coefficients, an example of such a file
would be:

0.98
0.24
0.12
0.05
-0.13
0.21

« If CoefFileFormat = HEX, which specifies that the filter tap coefficient file
contains hex values for the filter tap coefficients, an example of such a file would
be:

Ox7f
0x06
0x02
0x8f
0x07
0x08

The NumTaps parameter specifies the number of tap coefficients to be read from the
file specified by CoefFile.

The CoefPrecision parameter specifies the precision of the filter tap coefficients, that
is, the number of integer bits (including the sign bit) and the number of fractional
bits to be used to represent the filter tap coefficients.

. For general information regarding numeric fixed-point DSP functions, refer to

Numeric Fixed-Point DSP Components (numeric).

342



Advanced Design System 2011.01 - Numeric Components

ShiftRegPPSyn

Description: Parallel In/Parallel Out Shift Register
Library: Numeric, Fixed-Point DSP

Class: SDFShiftRegPPSyn

Derived From: SDFHPFix

Parameters
Name Description Default Type
Width |number of bits in internal state of shift register 16 int
Dir direction of bit shift: RIGHT, LEFT LEFT enum
ValueS value loaded into the register when the Set control pin is 0 int
asserted
Pin Inputs
Pin |[Name |Description Signal Type
1 |Data |Datainput fix
2 |Serin |Serial bit input fix
3 |Clock |Clock input — optional control pin fix
4 |Load |Load control input - optional control pin fix
5 |Shift [Shift control input - optional control pin fix
6 |[Set Asynchronous set/reset input — optional control pin [fix
Pin Outputs
Pin [Name |Description Signal Type
7 1Q Shifted data fix
output

Notes/Equations

1. ShiftRegPPSyn (Parallel_In/Parallel_Out) clock is positive-edge triggered and shifts
the internal register data upon detecting the positive edge.

2. Direction of shifting is done assuming that the MSB is on the left and the LSB is on
the right. For example, if Dir = LEFT, then shifting is done toward the MSB;
conversely, if Dir = RIGHT, then shifting is done toward the LSB.

3. ValueS can be specified in hex (0x prefix), octal (0 prefix),
binary (0Ob prefix), or decimal (without a 0 prefix).
For example, to specify a ValueS of decimal value 31, set
ValueS = 31 (decimal), ValueS = 0x1F (hex), ValueS = 037 (octal), or ValueS =
Ob11111 (binary).

4, For general information regarding numeric fixed-point DSP functions, refer to

343



Advanced Design System 2011.01 - Numeric Components
Numeric Fixed-Point DSP Components (numeric).



Advanced Design System 2011.01 - Numeric Components

ShiftRegPSSyn

Description: Parallel In/Serial Out Shift Register
Library: Numeric, Fixed-Point DSP

Class: SDFShiftRegPSSyn

Derived From: SDFHPFix

Parameters
Name Description Default Type
Width |number of bits in internal state of shift register 16 int
Dir direction of bit shift: RIGHT, LEFT LEFT enum
ValueS value loaded into the register when the Set control pin is 0 int
asserted
Pin Inputs
Pin |[Name |Description Signal Type
1 |Data |Datainput fix
2 |Clock |Clock input - optional control pin fix
3 |Load |Load control input — optional control pin fix
4  |Shift |Shift control input — optional control pin fix
5 |Set Asynchronous set/reset input — optional control pin [fix
Pin Outputs
Pin |[Name |Description Signal Type
6 Q Shifted data fix
output

Notes/Equations

1. ShiftRegPSSyn (Parallel_In/Serial_Out) clock is positive-edge triggered and shifts the
internal register data upon detecting the positive edge.

2. Direction of shifting is done assuming that the MSB is on the left and the LSB is on
the right. For example, if Dir = LEFT, then shifting is done toward the MSB;
conversely, if Dir = RIGHT, then shifting is done toward the LSB.

3. For general information regarding numeric fixed-point DSP functions, refer to
Numeric Fixed-Point DSP Components (numeric).

345



Advanced Design System 2011.01 - Numeric Components

ShiftRegSPSyn

3
Description: Serial In/Parallel Out Shift Register
Library: Numeric, Fixed-Point DSP

Class: SDFShiftRegSPSyn

Derived From: SDFHPFix

Parameters

Name Description

Default Type

Width |number of bits in internal state of shift register 16 int
Dir direction of bit shift: RIGHT, LEFT LEFT enum
ValueS |value loaded into the register when the set control pin is asserted |0 int
Pin Inputs

Pin |[Name |Description Signal Type

1 |Data |Data input fix

2 |Clock |Clock input — optional control pin fix

3 [Shift |Shift control input — optional control pin fix

4 |Set Asynchronous set/reset input - optional control pin [fix
Pin Outputs

Pin Name Description Signal Type
5 1Q Shifted data fix
output

Notes/Equations

1. ShiftRegSPSyn (Serial_In/Parallel_Out) clock is positive-edge triggered and shifts the

internal register data upon detecting the positive edge.

2. Direction of shifting is done assuming that the MSB is on the left and the LSB is on
the right. For example, if Dir = LEFT, then shifting is done toward the MSB;
conversely, if Dir = RIGHT, then shifting is done toward the LSB.

3. ValueS can be specified in hex (0x prefix), octal (0 prefix),

binary (0Ob prefix), or decimal (without a 0 prefix).

For example, to specify a ValueS of decimal value 31, set
ValueS = 31 (decimal), ValueS = 0x1F (hex), ValueS = 037 (octal), or ValueS =

Ob11111 (binary).

4. For general information regarding numeric fixed-point DSP functions, refer to

Numeric Fixed-Point DSP Components (numeric).

346



Advanced Design System 2011.01 - Numeric Components

SineCosineSyn

|

b 11

iy

Description: Sine/Cosine Look-up Table
Library: Numeric, Fixed-Point DSP
Class: SDFSineCosineSyn

Derived From: SDFHPFix

Parameters
Name Description Default Type
OutWidth Output width of NCO. |10 int
PhaselnWidth \Width of Phaseln 10 int
input.
Pin Inputs
Pin Name Description Signal Type
1 |Phaseln Phase input — unsigned fix
2 |Clock Clock input - optional control pin fix
3 |SineOrCosine [SineOrCosine - controls whether sine or cosine is fix
output
Pin Outputs

Pin [Name |Description Signal Type
4 |Out fix

Notes/Equations

1. This model implements a sine or cosine look-up table; given an input phase value, it
outputs a fixed point value (1 sign bit, (OutWidth-1) fractional bits twos-
complement) corresponding to the Sine or Cosine of the phase.

2. The (optional) 1-bit control input SineOrCosine determines whether a sine or cosine
value is evaluated by the model.

o If the SineOrCosine pin is un-connected (in other words, unused) then the
default output of the model is a sine value.

o If the SineOrCosine pin is connected, then a low value (corresponding to 0) will
cause the model to output a cosine value, and, conversely a high value
(corresponding to 1) will cause the model to output a sine value.

3. The input phase value in Phaseln is interpreted within the model as an unsigned fixed
point number (with PhaseInWidth integer bits, and no fractional bits) and the value of

sine(2n x Phaseln/(2 PhaselnWidth yy or cosine(2n x Phaseln/(2 PhaselnWidth yy g
evaluated, and output. The output value in Out is represented as a twos-
complement, 1-sign bit, (OutWidth-1) fractional bits, fixed point humber.

For general information regarding numeric fixed-point DSP functions, refer to
347



Advanced Design System 2011.01 - Numeric Components
4,
Numeric Fixed-Point DSP Components (numeric).



Advanced Design System 2011.01 - Numeric Components

SinkRespSyn

1T _p Resp

)

Description: Response Sink
Library: Numeric, Fixed-Point DSP
Class: SDFSinkStimSyn

Parameters

Name Description Default Type
Start |sample number at which to start recording DefaultNumericStart |int

Stop |sample number at which to stop recording DefaultNumericStop |int
Pin Inputs

Pin [Name |Description Signal Type
1 |input |input signal [fix

Notes/Equations

1. SinkRespSyn collects Fix data for test vector responses.

2. For general information regarding numeric fixed-point DSP functions, refer to
Numeric Fixed-Point DSP Components (numeric).

349



Advanced Design System 2011.01 - Numeric Components

SinkStimSyn

1T i Stim

Description: Stimulus Sink
Library: Numeric, Fixed-Point DSP
Class: SDFSinkStimSyn

Derived From: SDFHPFix

Parameters

Name Description Default Type
Start |sample number at which to start recording DefaultNumericStart |int

Stop |sample number at which to stop recording DefaultNumericStop |int
Pin Inputs

Pin [Name |Description Signal Type
1 |input |input signal [fix

Notes/Equations

1. SinkStimSyn collects Fix data for test vector stimulus.

2. For general information regarding numeric fixed-point DSP functions, refer to
Numeric Fixed-Point DSP Components (numeric).

350



Advanced Design System 2011.01 - Numeric Components
SubRegSyn

5

4.
vy
}.

'

i

LA 4

Description: Registered Subtracter
Library: Numeric, Fixed-Point DSP
Class: SDFSubRegSyn

Derived From: SDFHPFix

Parameters

Name Description Default Type

RoundFix fixed-point computations, assignments, and data type TRUNCATE enum
conversions option: TRUNCATE, ROUND

OutputPrecision |precision of the output in bits 2.14 precision

ArithType arithmetic type of output: TWOS_COMPLEMENT, UN_SIGNED TWOS_COMPLEMENT enum

OvflowType overflow characteristic for device: WRAPPED, SATURATE WRAPPED enum

Pin Inputs

Pin Name Description Signal Type

1 A fix

2 B fix

3 |Clock |Clock input — optional control pin fix

4 |CE Clock enable input - optional control pin fix

5 |Set Asynchronous set/reset input — optional control pin [fix

Pin Outputs

Pin /Name Description Signal Type
6 |Result fix

Notes/Equations

1. This model is a registered subtracter. It calculates the subtraction of its A and B data
inputs (A-B) and registers its output Result such that it has the specified precision as
set in the OutputPrecision parameter.

2. The Clock input is optional.

« if it is connected, the model will operate based on the positive edge transitions
of the Clock input.

« if it is not connected, the model will operate as if every sample step of the
simulator is a positive edge transition.

3. Assertion of the Reset input by bringing it low (a value of 0) will clear the output data
register.

4. The (optional) CE input is the clock-enable control for the output data register.

« if it is connected and has a high value (a value of 1), the output data register is

351



Advanced Design System 2011.01 - Numeric Components
enabled and will load the addition result upon a positive Clock edge.
« if it is connected, and low (a value of 0), the clock to the output data register is
disabled.
« if the CE input is not connected, the output data register is always enabled.
5. For general information regarding numeric fixed-point DSP functions, refer to
Numeric Fixed-Point DSP Components (numeric).

352



Advanced Design System 2011.01 - Numeric Components

SyYmFIRSyn

Description:

Symmetric Finite Impulse Response (FIR) Filter

Library: Numeric, Fixed-Point DSP
Class: SDFSymFIRSyn
Derived From: SDFHPFix

Parameters

Name
OutputPrecision

Description
precision of the output in bits

Default

2.14

Type
precision

ArithType arithmetic type of output: TWOS_COMPLEMENT, UN_SIGNED TWOS_COMPLEMENT enum
NumOfTaps Number of taps in FIR filter. 2 int
CoefPrecision Precision of the coefficients in the coefficient file. 2.14 precision
DataPrecision  |Precision of the MidDataOut output (used in cascading FIR 2.14 precision
filters).
CoefFile File containing FIR coefficient values. filename
CoefFileFormat |Format of FIR Coefficients file.: REAL, HEX HEX enum
CascadeMode |Use filter in cascade mode? NO, YES NO enum
SymmetricMode |Is filter symmetric or anti-symmetric? SYMMETRIC, SYMMETRIC enum
ANTI_SYMMETRIC
Pin Inputs
Pin Name Description Signal Type
1 |Dataln Data input fix
2 |Clock Clock input - optional control pin fix
3 |Set Asynchronous set/reset input — optional control pin fix
4 |MidDataln |Mid point data input (optional) (with precision = precision of Dataln fix
input)
Pin Outputs
Pin Name Description Signal
Type
5 |Result FIR result output (with precision OutputPrecision) fix
DataOut End point data output (with precision DataPrecision = precision of Dataln fix
input)
7 MidDataOut |[Mid point data output (with precision DataPrecision = precision of Dataln fix

input)

Notes/Equations

1. This model is a symmetric FIR (finite impulse response) filter model. It implements a

353



Advanced Design System 2011.01 - Numeric Components
general parallel FIR structure with symmetric filter tap coefficients. It retains full
precision internally when calculating filter output values. The only quantization done
is at the Result output of the model.

Internal Structure of Symmetric FIR Model

CataCut - REG REG — — - REG |~e— hiidDetadn

Drataln REG j. i ciCata ot

»— FEsult

2. Data from Dataln input is clocked into the internal data registers of the FIR model
upon the positive edge transitions of the Clock input if the Clock pin is connected. If
the Clock pin is not connected, then data is shifted into the internal data registers at
every sample step in the simulator.

3. The (optional) input MidDataln and outputs MidDataOut and DataOut are used when
cascading several symmetric FIR models. Cascading may be desirable in the case
where there is a limit on the FIR filter order per Symmetric FIR model, which is the
case in the Xilinx CORE Generator Symmetric FIR filter that is limited, at most, to 20
filter taps per Symmetric FIR core.

The parameter CascadeMode should be set to YES if the model is to be cascaded to
feed another Symmetric FIR model or NO if it does not feed into another Symmetric
FIR model. If CascadeMode is set to NO for no cascading, then (internally within the
model), the MidDataln input takes its input data from the MidDataOut output of the
model.

Cascading of several Symmetric FIR filter models is illustrated below.

Cascading of Several Symmetric FIR Filter Models

Da=Cut Da=tut
SYMmMEric pidDagln  [SymmanchsNgmin  [Symmeric
F IR Fitter - F IR Filter |- FIR Filtter
Daan Datan
Cratal r—- - -
Fesult  pipogoe | Fesut Widisteom | Result
3 ¥ .
i Ty g FirE
- T " Resutt

4, The parameter SymmetricMode is used to select whether the FIR filter coefficients
are symmetric or anti-symmetric.

5. The Result output of the symmetric FIR model is the final result of the FIR filtering
done within the model, and quantized to the precision specified by OutputPrecision.

6. The 1-bit Reset input pin is asserted by bring it low (i.e., value of 1), which will clear
all the internal data registers.

7. Since the filter is symmetric or anti-symmetric, only the first half of the filter tap
coefficients need to be defined in the filter definition file.
The filter tap coefficients of the FIR filter is defined in the file as specified in the

354



8.

9.

10.

Advanced Design System 2011.01 - Numeric Components
CoefFile parameter. The format of the file is specified by the CoefFileFormat
parameter; the tap coefficients can be specified as real or hex values. The tap
coefficients are specified as a column of values in the file. The 0th tap filter
coefficient is the value on the first line of the filter tap coefficient file, the 1th tap
filter coefficient corresponds to the value on the second line, the 2th tap filter
coefficient corresponds to the value on the third line, and so on.
Consider the following examples.

« If CoefFileFormat = REAL, which specifies that the filter tap coefficient file
contains real values for the filter tap coefficients, then an example of such a file
would be:

0.98
0.24
0.12
0.05
-0.13
0.21

« if CoefFileFormat = HEX, which specifies that the filter tap coefficient file
contains hex values for the filter tap coefficients, then an example of such a file
would be:

Ox7f
0x06
0x02
Ox8f
0x07
0x08

The NumTaps parameter specifies the number of tap coefficients to be read from the
file specified by CoefFile.

The CoefPrecision parameter specifies the precision of the filter tap coefficients, that
is, the number of integer bits (including the sign bit) and the number of fractional
bits to be used to represent the filter tap coefficients.

For general information regarding numeric fixed-point DSP functions, refer to
Numeric Fixed-Point DSP Components (numeric).

355



Advanced Design System 2011.01 - Numeric Components

Xor2Syn

Description: 2-input XOR
Library: Numeric, Fixed-Point DSP
Class: SDFXor2Syn

Derived From: SDFHPFix

Parameters

Name Description Default Type

Width Width of an input 8 int
bus.

Pin Inputs

Pin /Name Description Signal Type

1 A fix
2 B fix
Pin Outputs

Pin Name Description Signal Type
3 |Result fix

Notes/Equations

1. This model is a 2-input XOR gate. It takes a bitwise XOR of inputs A and B (both of
bitwidth Width) and outputs the results, that is, Result = A XOR B.

2. For general information regarding numeric fixed-point DSP functions, refer to
Numeric Fixed-Point DSP Components (numeric).

356



Advanced Design System 2011.01 - Numeric Components

XorSyn

«_9,,2

Description: Bitwise XOR
Library: Numeric, Fixed-Point DSP
Class: SDFXorSyn

Derived From: SDFHPFix

Parameters

Name Description
Width |size of a bus segment within the input bus

Size |number of bus segments within the input
bus

Pin Inputs

Pin Name Description Signal Type
1 |Data fix
Pin Outputs

Pin Name Description Signal Type
2 |Result fix

Notes/Equations

1. The input bus is composed of Size number of smaller bus segments. Each bus
segment within the input bus is of bitwidth Width. XorSyn performs a bitwise XOR of
the bus segments resulting in the output Result of bitwidth Width. For example,
Width = 8, Size = 2 means that the input bus is interpreted as having 2 bus
segments, each of bitwidth 8. The output of XorSyn is the bitwise XOR of the 2 bus

Default Type

8
2

segments, as illustrated in the figure below.

Width = 8, Size = 2

1Bk

L
g

2. An example designh where two 8-bit signals are XORed together is shown below.

357

int
int



Advanced Design System 2011.01 - Numeric Components
XorSyn Example

ToISyn

HLY WIRCE

BusMergeSyn w1
B Widi h=E
wWigLh=15 Sige=7

3. For general information regarding numeric fixed-point DSP functions, refer to
Numeric Fixed-Point DSP Components (numeric).

358



Advanced Design System 2011.01 - Numeric Components

ZerolnterpSyn

2 p)
LI

Description: Zero insertion interpolator
Library: Numeric, Fixed-Point DSP
Class: SDFZerolnterpSyn

Derived From: SDFHPFix

Parameters

Name Description Default Type

ArithType arithmetic type of output: TWOS_COMPLEMENT, UN_SIGNED |TWOS_COMPLEMENT |enum

UpSampleRatio |Up-sample ratio 2 int

DataPrecision |Precision of output data - its bitwidth must equal input data [2.14 precision
bitwidth

Pin Inputs

Pin |[Name |Description Signal Type

1 |Data |Datainput fix

2 |Clock |Clock input fix

3 |Reset |Asynchronous set/reset input - optional control pin [fix
Pin Outputs

Pin [Name |Description Signal Type
4  |Result |Clock output [fix

Notes/Equations

1. This model is a data interpolator. It performs an upsampling of the input data by
inserting extra zeros (UpSampleRatio —1 zeros) for each input data. For example,
given an input value of Ox1F, with UpSampleRatio equal to 2 (meaning this model is
upsampling by 2), the output Result will give the values 0x1F, 0.

2. For general information regarding numeric fixed-point DSP functions, refer to
Numeric Fixed-Point DSP Components (numeric).

359



Advanced Design System 2011.01 - Numeric Components

Numeric Logic Components

DFF (numeric)

DivByN (numeric)
JKFF (numeric)

LFSR (numeric)

Logic (numeric)
LogicAND (numeric)
LogicAND2 (numeric)
LogicInverter (numeric)
LogicLatch (numeric)
LogicNAND (numeric)
LogicNANDZ2 (numeric)
LogicNOR (numeric)
LogicNOR2 (numeric)
LogicOR (numeric)
LogicOR2 (numeric)
LogicXNOR (numeric)
LogicXNORZ2 (numeric)
LogicXOR (numeric)
LogicXOR2 (numeric)
Multiple (numeric)
Test (numeric)

TestEQ (numeric)
TestGE (numeric)
TestGT (numeric)
TestLE (numeric)
TestLT (numeric)
TestNE (numeric)

The Numeric Logic component library contains operators on Boolean valued integer signals
(values are either 0 or 1) or double precision floating-point (real) signals. Each component
produces Boolean integer values. Positive logic is used: low (or false) = 0, high (or true) =
1.

If a component receives another class of signal, the received signal is automatically
converted to the signal class specified as the input of the component. Auto conversion
from a higher to a lower precision signal class may result in loss of information. For details
on conversions between different classes of signals, refer to Conversion of Data Types
(ptolemy) in the ADS Ptolemy Simulation (ptolemy) documentation.

360



DFF

:

b
F

= b | |

Advanced Design System 2011.01 - Numeric Components

Description: D-Type Binary Data Flip-Flop (Edge Triggered)

Library: Numeric, Logic

Class: SDFDFF

Derived From: baseOmniSysNumericStar

Pin Inputs

Pin Name Description Signal Type

1 R clear input |int
2 |C clock input |int
3 D D input int
4 |S preset input |int
Pin Outputs

Pin /Name Description

5 1Q Q output

Signal Type
int

6 |NQ inverted Q output |int

Notes/Equations

1. Function table
Inputs

R (Pin 1)
H

I T T r -

Outputs

C (Pin 2) D (Pin 3 S (Pin 4) Q (Pin 5)
X X L H

X X H L

X X L H

up H H H

up L H L

L X H Qo0

NQ (Pin 6)

II|r T |IT

NQO

whereS = input preset, active with logic low levelR = input clear, active with logic low levelC = input
clock, active with low to high transitionx = don't care stateL = logic low level. Input: < 0.5; Output:
0.0H = logic high level. Input: > 0.5; Output: 1.0UP = low-to-high transitionQ0 = previous Q stateNQ
= inverted Q stateNQO = previous inverted Q state
2. At the first sample, the outputs Q and NQ are equal to L and H, respectively.
3. Input, output and clock signal values of the DFF component, with S (pin 4) and R (pin
1) both tied to a high logic level, are shown below.

361



Advanced Design System 2011.01 - Numeric Components

DFF Input, Output, and Clock Signal Values

15 . . . . I
10 o ...... p o l = §
Input Signal :
Dlp|n3:|_.... 0.5 4] ................. L 2.0
uu ..... E ..... 15
-0 5§ 10D
-1 40 Lo 5 --—Input
Signal C
-1 5 4 0D ipin 2)
_:zg ............................... ._UE
_2I5. ............................... _1 |:|
-3 0 o ~1-5
15 i
Output 1404 g ...... g bos
Signal Q . : : .
|:p|r|5:| — 3,54 - ._ ...... ...... _. . I
n.o 4=— .. . —E—E— ...... L4 1.5
=0 5§ f— - G —t 1 D
o) P A i..]..f o s -s—Qutput Signal
N G (pin 6)
-1 5 w ............ & 0o
_:zﬂ ............................... ._UE
2.5 ... SRR e P P L —1.0
-3 0 g T ~1-5

4. For general information regarding numeric logic component signals, refer to Numeric
Logic Components (numeric).

362



Advanced Design System 2011.01 - Numeric Components

DivByN

Description: Binary Data Divide-By-N Counter
Library: Numeric, Logic

Class: SDFDivByN

Derived From: baseOmniSysNumericStar

Parameters

Name Description Default Unit Type Range
N divide-by factor 1 int [1, o0)
NO initial counter value |0 int [0, N)

Pin Inputs

Pin [Name |Description Signal Type
1 |input |input signal |int
Pin Outputs

Pin [Name Description Signal Type
2 |output |output signal |int

Notes/Equations

1. DivByN is a model of a positive edge-triggered, modulo N down counter. The input to
the component is a clock signal; the output is a signal that is high or low, depending
on whether the current counter value is greater or less than floor (N/2). (Note that
the counter value itself is not available as an output.)

Let M(k) denote the counter value after the _k_th positive clock edge. Then
M(0) = NO
M(k) = (M(k = 1) — 1) moduloN, k=1

0 ifM(k) =floor [%rj
V()= -

1 if M(k) < floor [%J]

2. The input and output signal values of the DivByN component, parameters N = 5 and
NO = 4, are shown in DivByN Input and Output Signal Values, N =5 and NO = 4.
Note that the initial counter value is 4, and therefore the output is low (because it is
> 2 (floor(5/2)). When the first input positive edge occurs, the counter is
decremented to 3 and the output is still low. At the second input positive edge, the
counter is decremented to 2 and the output is low. At the third positive edge the

363




Advanced Design System 2011.01 - Numeric Components
counter is decremented to 1, which makes the output high (because it is < 2
(floor(N/2))). Similarly, at the fourth positive edge, the counter decrements to 0 and
the output is high. At the fifth positive edge, the counter decrements to negative and
is therefore reset to 4 and the output is low.
The input and output signal values of the DivByN component, parameters N = 5 and
NO = 1, are shown in DivByN Input and Output Signal Values, N =5 and NO = 1.
Note that the initial counter value is 1, and therefore the output is high (because it is
< 2 (floor(5/2)). At the first input positive edge, the counter is decremented to O,
which means that the output is still high. At the second positive edge the counter is
reset to 4 and the output is low.

DivByN Input and Output Signal Values, N = 5 and NO = 4

15 — 3D
1 a4 -0 + ....... ]
Output Lo : D :
SIQHB'—.‘ I:I.E"'- "-':E.I:I
0.9 @ & I
=0 8 §= ¢ — 10
-1 4 L 0 5 --l—Input
Signal
=1 54 ... e VI
_:zﬂ PRI R T P ||.-._E|5
- T e =10
B g %

1 0 e ..:i..4 28
Output B
Slgﬂﬁl . DIE., ..... "-'2.|:|
n.ad-- e s 1,5
-0 5 10D
=1 4 4 + 05 —— Input
Signal
=1 5§ | . oo
_2-;"_1 BRI ||.-._U5
- T T b =10
-3 0T 5o ' F

3. For general information regarding numeric logic component signals, refer to Numeric
Logic Components (numeric).

364



Advanced Design System 2011.01 - Numeric Components

JKFF

Lo o I T I e ]

Description: Binary Data J-K Type Flip-Flop
Library: Numeric, Logic

Class: SDFIKFF

Derived From: baseOmniSysNumericStar

Pin Inputs

Pin Name Description Signal Type

1 R clear input |int

2 K K input int

3 |C clock input |int

4 |] J input int

5 |S preset input |int

Pin Outputs

Pin [Name |Description Signal Type
6 IQ Q output int

7 INQ inverted Q output |int

Notes/Equations

1. Function table:

Input Output

R (pin 1) K (pin 2) C (pin 3) J (pin 4) S (pin 5) Q (pin 6) NQ (pin 7)
L X X X L H H

H X X X L H L

L X X X H L H

H L up L H Qo0 NQO

H L up H H H L

H H up L H L H

H H up H H TOGGLE

whereC = input clock, active with low to high transitionS = input preset, active with logic low levelR =
input clear, active with logic low levelx = don't care statelL = logic low level; Inputs < 0.5; Outputs
0.0H = logic high level; Inputs = 0.5; Outputs 1.0UP = low-to-high transitionQ0 = previous Q stateNQ
= inverted Q stateNQO = previous inverted Q state

2. At the first sample, the outputs Q and NQ are equal to L and H, respectively.

3. The input and output signal values of the JKFF component, with S (pin 5) and R (pin

365



Advanced Design System 2011.01 - Numeric Components
1) both tied to a high logic level, are shown in JKFF Input and Output Signal Values.
The clock signal (not shown) is set such that it is first active (low to high transition
occurs) at the first 0.5 grid unit and has a period of 1 grid unit.

JKFF Input and Output Signal Values

15 kil
Input 10 25
Signal J
pind) — = 0.5 - 2.0
0.4 A = 1.5
“O 5 B e e 1D
1 oad b 1] 5_.-_|nput SQHB'
K (pin 2)
-1 5§ 1}
_:zlﬂ ..................................... _ULE
_2I5 ............................... _1I_|:|
B T go '-F
15 . 3D
Output 10 3 S &5
Signal Q '
|:Pin5:| — 0,5 J bt .0
0.0 =L .+ v B .. .. 1.5
B ) L LS 10D
e d b e 05 --— Cutput Signal
NQ (pin 7)
=1 B d bm—m———. ... oo
_:zlﬂ ..................................... _ULE
_2I5 ........................... ST _1r|:|
-3 4 a7 ~1-°

4. For general information regarding numeric logic component signals, refer to Numeric

Logic Components (numeric).

366



Advanced Design System 2011.01 - Numeric Components

LFSR

Description: Linear feedback shift register
Library: Numeric, Logic

Class: SDFLFSR

Derived From: baseOmniSysNumericStar

Parameters
Name Description Default Unit Type Range
Seed initial value loaded into the shift register 1 int
array
FeedbackList |tap positions for non-zero feedback 7321 int
coefficients array
Pin Inputs

Pin [Name Description Signal Type
1 |clock |clock signal |int
Pin Outputs

Pin |[Name |Description [Signal Type
2 |output|output signal |int

Notes/Equations

1. The linear feedback shift register component can be used to generate PN sequences
with user-defined recurrence relations. The input to the LFSR is a clock signal. A new
bit value is generated at the output every time the input signal transitions from 0 to
1. The diagram below illustrates an LFSR model.

LFSR Model

| MODULO 2 ADDER

A

(I;_) az) air)=1 S

ouTPLUT

367



Advanced Design System 2011.01 - Numeric Components
Data is shifted to the right in the shift register. The length of the shift register is r.
The numbers a(1), a(2), ..., a(r) are the binary feedback coefficients specified by
FeedbackList.
The shift register length r is defined by the largest value in FeedbackList. For
example, a FeedbackList of 7 3 2 1 results in a shift register length of 7; the
maximum value allowed in FeedbackList is 31, which results in a maximum shift
register length of 31.
The initial contents of the shift register are specified by the value of Seed. The

maximum meaningful value for Seed is 2" — 1 for a specific FeedbackList. The

maximum Seed value allowed is 231 — 1.
The following equations describe the operation of LFSR.

Diny = [Z al;k]Dm—k]] mod?2 forn=1
k=1

where
D(0) = Seed , (0)

D(-1) = Seed , (1)

i:)(l —r)=Seed, (r—1)

and

Seed = Z Seedzl;kjfk
kzo

where

Seed , (k) &{0,1}forO <k <
Example: Let Seed = 2, and r =7

Then

Seed , (0) =0
Seed , (1) =1
Seed, (2) =0
Seed , (6) = 0
Therefore,

D(0) = Seed , (0) =0
D(-1)=Seed, (1) =1
D(-2)=Seed, (2) =0

D(—6 ) = Seed ,, (6) = 0

2. The binary feedback coefficients are specified by FeedbackList, which is a list of

368



Advanced Design System 2011.01 - Numeric Components
feedback coefficients. The coefficients are specified by listing the locations where the
feedback coefficients equal 1. For example, the recurrence relation
D(n)=(D(n-=-7)+D(n-=-3)+D(n—=-2)+D(n—-1))mod 2
is specified by the list [7, 3, 2, 1]
The table below includes an extensive list of feedback coefficients for linear feedback
shift registers showing one or more alternate feedback connections for a given
number of stages.

Feedback Connections for Linear m-Sequences

Number Code Length Maximal Taps

of Stages

22 3 [2, 1]

3@ 7 [3, 1]

4 15 (4, 1]

5@ 31 [5, 21 1[5, 4, 3, 2] [5, 4, 2, 1]

6 63 [6,1]1([6,5,2,1,]1[6,5,3,2,]

7 a 127 [71 1] [71 3] [71 3[ 2[ 1I] [7I 4I 3[ 2[] [7I 6[ 4I 2] [71 6[ 3[ 1]
[7,6,5,2][7,6,5,4,2,1]1[7,5,4, 3, 2,1]

8 255 [8,4,3,2][8,6,5,3][8,6,5,2][8,5,3,1][8, 6,5, 1] [8,
7[ 6[ 1] [8I 7[ 6[ 5[ 2[ 1] [81 6[ 4[ 3[ 2[ 1]

9 511 [9,4]1[9,6,4,3]1[9,8,5,411[9,8,4,1][9,5,3,2][9, 8, 6,
51[9,8,7,2][9,6,5,4,2][9,7,6,4,3,1][9,8,7,6,5,
3]

10 1023 [10, 3] [10, 8, 3, 2] [10, 4, 3, 1] [10, 8, 5, 1] [10, 8, 5, 4]
[10, 9, 4, 1] [10, 8, 4, 3] [10, 5, 3, 2] [10, 5, 2, 1] [10, 9, 4,
2]

11 2047 [11, 2][11,8,5,2][11,7,3,2][11,5,3,5][11, 10, 3, 2]
[11,6,5,1][11,5,3,1][11,9, 4, 1] [11, 8,6, 2] [11, 9, 8,
3]

12 4095 [12, 6,4, 1][12,9, 3, 2][12, 11, 10, 5, 2, 1] [12, 11, 6, 4,

2, 1112, 11,9, 7, 6, 5] [12, 11,9, 5, 3, 1] [12, 11,9, 8, 7,
4][12, 11,9, 7,6, 5] [12, 9, 8, 3, 2, 11 [12, 10, 9, 8, 6, 2]

132 8191 [13, 4, 3, 1] [13, 10,9, 7, 5, 4] [13, 11, 8, 7, 4, 1] [13, 12,
8,7,6,5[13,9,8,7,5, 1113, 12, 6, 5, 4, 3] [13, 12, 11,
9,5,3][13, 12, 11, 5,2, 1] [ 13, 12,9, 8, 4, 2] [13, 8, 7, 4,
3, 2]

14 16,383 [14, 12, 2, 1] [14, 13, 4, 2] [14, 13, 11, 9] [14, 10, 6, 1]
[14, 11, 6, 1] [14, 12, 11, 1] [14, 6, 4, 2] [14, 11, 9, 6, 5, 2]
[14, 13,6, 5, 3, 1] [14, 13, 12, 8, 4, 11[14, 8, 7, 6, 4, 2]
[14, 10, 6, 5, 4, 1] [14, 13, 12, 7, 6, 3] [14, 13, 11, 10, 8, 3]

15 32,767 [15, 1] [15, 4] [15, 13, 10, 9] [15, 13, 10, 1] [15, 14, 9, 2]
[15, 9, 4, 1] [15, 12, 3, 1] [15, 10, 5, 4] [15, 10, 5, 4, 3, 2]
[15, 11, 7, 6, 2, 1] [15, 7, 6, 3, 2, 1][15, 10, 9, 8, 5, 3] [15,
12,5, 4, 3, 2] [15, 10, 9, 7, 5, 3] [15, 13, 12, 10] [15, 13,
10, 2] [15, 12, 9, 1] [15, 14, 12, 2] [15, 13, 9, 6] [15, 7, 4,
1]1[15, 13, 7, 4]

16 65,535 [16, 12, 3, 1] [16, 12, 9, 6] [16, 9, 4, 3] [16, 12, 7, 2] [16,
10, 7, 6] [16, 15, 7, 21 [16, 9, 5, 2] [16, 13, 9, 6] [16, 15, 4,
2116, 15, 9, 4]

17 a 131,071 [17, 31117, 3, 21[17, 7, 4, 31 [17, 16, 3, 1] [17, 12, 6, 3, 2,
11[17,8, 7, 6, 4, 31 [17, 11, 8, 6, 4, 2] [17, 9, 8, 6, 4, 1]
[17, 16, 14, 10, 3, 2] [17, 12, 11, 8, 5, 2]

369



18

19

20

21

22

23

24

25

26
27
28

29

30

31

32

33

34
35
36
37
38
39
40
41
42
43
44
45
46

Advanced Design System 2011.01 - Numeric Components

262,143

524,287

1, 048,575

2,097,151

4,194,303

8,388,607

16,777,215

33,554, 431

67,108,863
134,217,727
268,435,455

536,870,911

1,073,741,823

2,147,483,647

4,294,967,295

8,589,934,591

17,179,869,183
34,359,738,367
68,719,476,735
137,438,953,471
274,877,906,943
549,755,813,887
1,099,511,627,776
2,199,023,255,551
4,398,046,511,103
8,796,093,022,207
17,592,186,044,415
35,184,372,088,831
70,368,744,177,663

[18, 7] [18, 10, 7, 5] [18, 13, 11,9, 8, 7, 6, 3] [18, 17, 16,
15, 10, 9, 8, 71 [18, 15, 12, 11, 9, 8, 7, 6]

[19, 5, 2, 1] [19, 13, 8, 5, 4, 3] [19, 12, 10, 9, 7, 3] [19, 17,
15, 14, 13, 12, 6, 1] [19, 17, 15, 14, 13, 9, 8, 4, 2, 1] [19,
16, 13, 11, 19, 9, 4, 11 [19, 9, 8, 7, 6, 3] [19, 16, 15, 13, 12,
9,5,4,2,1][19, 18, 15, 14, 11, 10, 8, 5, 3, 2] [19, 18, 17,
16,12, 7,6, 5, 3, 1]

[20, 3] [20, 9, 5, 3] [20, 19, 4, 3] [20, 11, 8, 6, 3, 2] [20,
17, 14, 10, 7, 4, 3, 2]

[21, 2] [21, 14, 7, 2] [21, 13, 5, 2] [21, 14, 7, 6, 3, 2] [21,
8,7,4,3,2][21, 10, 6, 4, 3, 2] [21, 15, 10, 9, 5, 4, 3, 2]
[21, 14, 12, 7, 6, 4, 3, 2] [21, 20, 19, 18, 5, 4, 3, 2]

[22,11[22, 9, 5, 1] [22, 20, 18, 16,6, 4, 2, 1] [22, 19, 16,
13, 10, 7, 4, 11[22, 17,9, 7, 2, 11[22, 17, 13, 12, 8, 7, 2,
1][22, 14, 13, 12, 7, 3, 2, 1]

[23, 5] [23, 17, 11, 5] [23, 5, 4, 1] [23, 12, 5, 4] [23, 21, 7,
5] [23, 16, 13, 6, 5, 3] [23, 11, 10, 7, 6, 5] [23, 15, 10, 9, 7,
5,4,3][23,17, 11,9, 8, 5, 4, 1] [23, 18, 16, 13, 11, 8, 5,
2]

[24, 7, 21 [24, 4, 3, 1] [24, 22, 20, 18, 16, 14, 11,9, 8, 7, 5,
4] [24, 21, 19, 18, 17, 16, 15, 14, 13, 10, 9, 5, 4, 1]

[25, 3] [25, 3, 2, 1] [25, 20, 5, 3] [25, 12, 5, 4] [25, 17, 10,
3,2, 1125, 23, 21, 19, 9, 7, 5, 3] [25, 18, 12, 11, 6, 5, 4]
[25, 20, 16, 11, 5, 3, 2, 1] [25, 12, 11, 8, 7, 6, 4, 3]

[26, 6, 2, 1] [26, 22, 21, 16, 12, 11, 10, 8, 5, 4, 3, 1]
[27, 5, 2, 1] [27, 18, 11, 10, 9, 5, 4, 3]

[28, 3] [28, 13, 11, 9, 5, 3] [28, 22, 11, 10, 4, 3] [28, 24,
20, 16, 12, 8, 4, 3, 2, 1]

[29, 2] [29, 20, 11, 2] [29, 13, 7, 2] [29, 21, 5, 2] [29, 26,
5, 2] [29, 19, 16, 6, 3, 2] [29, 18, 14, 6, 3, 2]

[30, 23, 2, 1] [30, 6, 4, 1] [30, 24, 20, 16, 14, 13, 11, 7, 2,
1]

[31, 29, 21, 17] [31, 28, 19, 15] [31, 31 [31, 3, 2, 1] [31, 13,
8, 31[31, 21, 12, 3, 2, 1] [31, 20, 18, 7, 5, 3] [31, 30, 29,
25] [31, 28, 24, 10] [31, 20, 15, 5, 4, 3] [31, 16, 8, 4, 3, 2]

[32, 22,2, 11132, 7,5, 3,2, 11[32, 28, 19, 18, 16, 14, 11,
10, 9, 6, 5, 1]

[33, 13] [33, 22, 13, 11] [33, 26, 14, 10] [33, 6, 4, 1] [33,
22, 16, 13, 11, 8]

[34,27,2,1]
[35,33]
[36,25]
[37,5,4,3,2,1]
[38,6,5,1]
[39,35]
[40,38,21,19]
[41,38]
[42,41,20,19]
[43,42,38,37]
[44,43,18,17]
[45,44,42,41]
[46,45,26,25]
370



Advanced Design System 2011.01 - Numeric Components

47 140,737,488,355,327 [47,42]
48 281,474,976,710,656 [48,47,21,20]

49 562,949,953,421,312 [49,40]

50 1,125,899,906,84,2623 [50,49,24,23]

51 2,251,799,813,685,248 [51,50,36,35]

52 4,503,599,627,370,496 [52,49]

53 9,007,199,254,740,991 [53,52,38,37]

54 18,014,398,509,481,983 [54,53,18,17]

55 36,028,797,018,963,967 [55,31]

56 72,057,594,037,927,935 [56,55,35,34]

57 144,115,188,075,855,871  |[57,50]

58 288,230,376,151,711,743  [58,39]

59 576,460,752,303,423,488  |[59,58,38,37]

60 1,152,921,504,606,846,975 [60,59]

61 2,305,843,009,213,693,951 |[61, 5, 2, 1]

62 4,611,686,018,427,387,903 |[62,61,6,5]

63 9,223,372,036,854,775,807 |[63,62] ] [[33, 13]
64 18,446,744,073,709,551,615 [64,63,61,60]

3. An alternative implementation of the LFSR is shown in Alternative Implementation of
LFSR. In order to get the same output sequence from the two implementations the
following relationships should hold between a(i) and b(i):
b(i)=a(r—1i),i=1,2,...,r—1.

Implementation of 5-Stage LFSR illustrates implementation for a shift register of
length 5 and FeedbackList = "2 5",

The sequence of the LFSR states in both implementations and the output (rightmost
bit of the state) is shown in LFSR States. The initial state was assumed to be 10000.
Although the shift register in the two implementations does not go through the same
sequence of states, the output sequence is the same for both. It is also worth noting
that if the initial state is different from 10000, the output sequences may not be
exactly the same but a shifted version of each other.

Alternative Implementation of LFSR

Implementation of 5-Stage LFSR

371



Advanced Design System 2011.01 - Numeric Components

Implementation 1

Implementaiion 2

LFSR States

ooo oo Ao A0 A A0 A0 0O ~A A A OO A A0 A 00O A0
Ao 0o 40 A1 A o0 A" 00 0~AA A AT OO0 A1 0 A0 HOO
5

=
WDIDDDDIDIDIIID110””11111””11”1””

a
a
EdooooHdodOAAA0O A A0 00 AN A"~ 00AA0AD O

o e e e B B e e R B R e T B e e e R R R I I R e B B B [ e P o e B
oo Ao A0 A A A0 A Ao 0 A A A A Ao AT O DSOS D

Lo e T e R e T B e B e e e e R e e I e R e I I B o B o B o o R

rigtion 1

o
mn.ln.l.“.lll.“.lln.n..ulllllnnllnlnnlnnnn
o

mlnlnlllnllnnnlllllnnllnlnnlnnnnl

4, Input and output signal voltages of the LFSR component are shown below.

LFSR Input and Output Signal Voltages

372



Advanced Design System 2011.01 - Numeric Components

15 3D

Output
Signal —me 0.5 {0

=1 40 ..-_In.put
Signal

-1 & { .

2.0 1 o

—2.5 | Lo

30T oo ' F

5. This component has been upgraded in ADS2005A. In earlier versions of ADS (before
ADS2005A), the maximum code length was 2,147,483,647 and the number of stages
was less than 32. Starting with ADS2005A, the maximum code length is
18,446,744,073,709,551,615 and the maximum number of stages is 64.

For the Seed parameter, designers can now specify a binary sequence to set the
initial signal stages up to 64 bits. (Before ADS2005A, Seed was specified by an
integer number that limited this component to support code lengths less than 32.)

6. For general information regarding numeric logic component signals, refer to Numeric

Logic Components (numeric).

373



Advanced Design System 2011.01 - Numeric Components

Logic

Description: test logic

Library: Numeric, Logic

Class: SDFLogic

C++ Code: See doc/sp_items/SDFLogic.html under your installation directory.

Parameters

Name Description Default Unit Type Range
Logic |test logic: NOT, AND, NAND, OR, NOR, XOR, XNOR /AND enum
Pin Inputs

Pin |[Name |Description Signal Type
1 Jinput |Input logic values. multiple int
Pin Outputs

Pin Name Description Signal
Type
2 |output Result of the logic test, with FALSE equal to zero and TRUE equal to a\nnon-zero int
integer (not necessarily 1).

Notes/Equations

1. Logic applies a logical operation to all inputs. The inputs are integers interpreted as
Boolean values.

2. The NOT operation requires only one input.

3. For general information regarding numeric logic component signals, refer to Numeric
Logic Components (numeric).

374



Advanced Design System 2011.01 - Numeric Components

LogicAND

Description: Multiple input logical AND function

Library: Numeric, Logic

Class: SDFLogic

C++ Code: See doc/sp_items/SDFLogic.html under your installation directory.

Pin Inputs

Pin [Name |Description Signal Type

1 Jinput |Input logic values. multiple int

Pin Outputs

Pin Name Description Signal
Type

2 |output Result of the logic test, with FALSE equal to zero and TRUE equal to a\nnon-zero int

integer (not necessarily 1).

Notes/Equations

1. LogicAND applies the AND logical operation to all inputs.

2. For general information regarding numeric logic component signals, refer to Numeric
Logic Components (numeric).

375



Advanced Design System 2011.01 - Numeric Components

LogicAND2

Description: 2-Input Logical AND Function
Library: Numeric, Logic

Class: SDFLogicAND2

C++ Code

Pin Inputs

Pin [Name Description Signal Type

1 |inputl int
2  |input2 int
Pin Outputs

Pin [Name Description [Signal Type
3  |output int

Notes/Equations

1. LogicAND2 applies the AND logical operation to both inputs.
2. For general information regarding numeric logic component signals, refer to Numeric
Logic Components (numeric).

376



Advanced Design System 2011.01 - Numeric Components

LogicInverter

Description: Logic inverter

Library: Numeric, Logic

Class: SDFLogic

C++ Code: See doc/sp_items/SDFLogic.html under your installation directory.

Pin Inputs

Pin [Name |Description Signal Type

1 Jinput |Input logic values. multiple int

Pin Outputs

Pin Name Description Signal
Type

2 |output Result of the logic test, with FALSE equal to zero and TRUE equal to a\nnon-zero int

integer (not necessarily 1).

Notes/Equations

1. LogicInverter applies the logic inversion operation on the input.

2. For general information regarding numeric logic component signals, refer to Numeric
Logic Components (numeric).

377



Advanced Design System 2011.01 - Numeric Components

LogicLatch

Description: Logic Latch

Library: Numeric, Logic

Class: SDFLogicLatch

Derived From: baseOmniSysNumericStar

Pin Inputs

Pin Name Description Signal Type
1 |data |input data int

2 |clock |clock signal |int

Pin Outputs

Pin [Name Description [Signal Type
3  |output |output data |int

Notes/Equations

1. Function table:

Input

Data (pin 1) Clock (pin 2)
L H

H H

X L

Output

Q (pin 3)
L

H

Qo0

whereClock = input clock, active with logic high levelx = don't care stateL = logic low level; Inputs <
0.5; Outputs 0.0H = logic high level; Inputs > 0.5; Outputs 1.0Q0 = previous Q state

Initially, at the first sample, the output Q is equal to L.

2. This component is clock level sensitive. If the designer prefers a clock edge-triggered

latch, the DFF component can be used with S = R = H.

3. The input, clock, and output signal voltages of the LogicLatch component are shown

below.

LogicLatch Input and Output Signal Values

378



Advanced Design System 2011.01 - Numeric Components

15 3D
18 PR S a K
Input - :
Slgﬂﬁl . D|5 P - .\. ..... L 2In
0.4 & & . 1.5
-0 5 | 10D
-1 4 L o0 5 -— Clock
Signal
=1 5 4 O D0
_2 ﬂ ....................... L _015
_2|5 T _1 |:|
-3 0 = —1-5
15

For general information regarding numeric logic component signals, refer to Numeric
Logic Components (numeric).

379



Advanced Design System 2011.01 - Numeric Components

LogicNAND

Description: Multiple input logical NAND function

Library: Numeric, Logic

Class: SDFLogic

C++ Code: See doc/sp_items/SDFLogic.html under your installation directory.

Pin Inputs

Pin [Name |Description Signal Type

1 Jinput |Input logic values. multiple int

Pin Outputs

Pin Name Description Signal
Type

2 |output Result of the logic test, with FALSE equal to zero and TRUE equal to a\nnon-zero int

integer (not necessarily 1).

Notes/Equations

1. LogicNAND applies the NAND logical operation to all inputs.

2. For general information regarding numeric logic component signals, refer to Numeric
Logic Components (numeric).

380



Advanced Design System 2011.01 - Numeric Components

LogicNAND2

Description: 2-Input Logical NAND Function
Library: Numeric, Logic

Class: SDFLogicNAND?2

Pin Inputs

Pin Name Description Signal Type

1 |inputl int
2 |input2 int
Pin Outputs

Pin [Name Description [Signal Type
3 |output int

Notes/Equations

1. LogicNAND2 applies the NAND logical operation to both inputs.
2. For general information regarding numeric logic component signals, refer to Numeric
Logic Components (numeric).

381



Advanced Design System 2011.01 - Numeric Components

LogicNOR

Description: Multiple input logical NOR function

Library: Numeric, Logic

Class: SDFLogic

C++ Code: See doc/sp_items/SDFLogic.html under your installation directory.

Pin Inputs

Pin [Name |Description Signal Type

1 Jinput |Input logic values. multiple int

Pin Outputs

Pin Name Description Signal
Type

2 |output Result of the logic test, with FALSE equal to zero and TRUE equal to a\nnon-zero int

integer (not necessarily 1).

Notes/Equations

1. LogicNOR applies the NOR logical operation to all inputs.

2. For general information regarding numeric logic component signals, refer to Numeric
Logic Components (numeric).

382



Advanced Design System 2011.01 - Numeric Components

LogicNOR2

Description: 2-Input Logical NOR Function
Library: Numeric, Logic

Class: SDFLogicNOR2

Pin Inputs

Pin Name Description Signal Type

1 |inputl int
2 |input2 int
Pin Outputs

Pin [Name Description [Signal Type
3 |output int

Notes/Equations

1. LogicNOR2 applies the NOR logical operation to both inputs.
2. For general information regarding numeric logic component signals, refer to Numeric
Logic Components (numeric).

383



Advanced Design System 2011.01 - Numeric Components

LogicOR

Description: Multiple input logical OR function

Library: Numeric, Logic

Class: SDFLogic

C++ Code: See doc/sp_items/SDFLogic.html under your installation directory.

Pin Inputs

Pin [Name |Description Signal Type

1 Jinput |Input logic values. multiple int

Pin Outputs

Pin Name Description Signal
Type

2 |output Result of the logic test, with FALSE equal to zero and TRUE equal to a\nnon-zero int

integer (not necessarily 1).

Notes/Equations

1. LogicOR applies the OR logical operation to all inputs.

2. For general information regarding numeric logic component signals, refer to Numeric
Logic Components (numeric).

384



Advanced Design System 2011.01 - Numeric Components

LogicOR2

Description: 2-Input Logical OR Function
Library: Numeric, Logic

Class: SDFLogicOR2

Pin Inputs

Pin Name Description Signal Type

1 |inputl int
2 |input2 int
Pin Outputs

Pin [Name Description [Signal Type
3 |output int

Notes/Equations

1. LogicOR2 applies the OR logical operation to both inputs.
2. For general information regarding numeric logic component signals, refer to Numeric
Logic Components (numeric).

385



Advanced Design System 2011.01 - Numeric Components

LogicXNOR

Description: Multiple input logical XNOR function
Library: Numeric, Logic

Class: SDFLogic
C++ Code: See doc/sp_items/SDFLogic.html under your installation directory.

Pin Inputs

Pin [Name |Description Signal Type

1 Jinput |Input logic values. multiple int

Pin Outputs

Pin Name Description Signal
Type

2 |output Result of the logic test, with FALSE equal to zero and TRUE equal to a\nnon-zero int

integer (not necessarily 1).

Notes/Equations

1. LogicXNOR applies the XNOR logical operation to all inputs.

2. For general information regarding numeric logic component signals, refer to Numeric
Logic Components (numeric).

386



Advanced Design System 2011.01 - Numeric Components

LogicXNOR2

N
fn ?

Y,

Description: 2-Input Logical XNOR Function
Library: Numeric, Logic

Class: SDFLogicXNOR2

Pin Inputs

Pin Name Description Signal Type

1 |inputl int
2 |input2 int
Pin Outputs

Pin [Name Description [Signal Type
3 |output int

Notes/Equations

1. LogicXNOR2 applies the XNOR logical operation to both inputs.
2. For general information regarding numeric logic component signals, refer to Numeric
Logic Components (numeric).

387



Advanced Design System 2011.01 - Numeric Components

LogicXOR

Description: Multiple input logical XOR function
Library: Numeric, Logic

Class: SDFLogic
C++ Code: See doc/sp_items/SDFLogic.html under your installation directory.

Pin Inputs

Pin [Name |Description Signal Type

1 Jinput |Input logic values. multiple int

Pin Outputs

Pin Name Description Signal
Type

2 |output Result of the logic test, with FALSE equal to zero and TRUE equal to a\nnon-zero int

integer (not necessarily 1).

Notes/Equations

1. LogicXOR applies the XOR logical operation to all inputs.

2. For general information regarding numeric logic component signals, refer to Numeric
Logic Components (numeric).

388



Advanced Design System 2011.01 - Numeric Components

LogicXOR2

2
) ;
1

/

Description: 2-Input Logical XOR Function
Library: Numeric, Logic

Class: SDFLogicXOR2

Pin Inputs

Pin Name Description Signal Type

1 |inputl int
2 |input2 int
Pin Outputs

Pin [Name Description [Signal Type
3 |output int

Notes/Equations

1. LogicXOR2 applies the XOR logical operation to both inputs.
2. For general information regarding numeric logic component signals, refer to Numeric
Logic Components (numeric).

389



Advanced Design System 2011.01 - Numeric Components

Multiple

Description: Multiple Test

Library: Numeric, Logic

Class: SDFMultiple

C++ Code: See doc/sp_items/SDFMultiple.html under your installation directory.

Pin Inputs

Pin [Name |Description Signal Type
1 |signal |Is this a multiple of the other input? |int

2 |test |Reference input (must be positive) |int

Pin Outputs

Pin |[Name |Description Signal Type
3 |mult |Equals 1 if signal is a multiple of test |int

Notes/Equations

1. Multiple outputs a logic high if the signal is an integer multiple of test; otherwise
output is a logic low.

2. For general information regarding numeric logic component signals, refer to Numeric
Logic Components (numeric).

390



Advanced Design System 2011.01 - Numeric Components

Test

Description: Comparison test

Library: Numeric, Logic

Class: SDFTest

C++ Code: See doc/sp_items/SDFTest.html under your installation directory.

Parameters

Name Description Default Type Range
Condition test condition: EQ, NE, GT, GE, LT, LE EQ enum
Tolerance finite-precision parameter for EQ and NE conditions only 0.0 real |(-co, c0)

CrossingsOnly |if True, output is True only when the test result toggles: False, True |False enum
Pin Inputs

Pin Name Description Signal Type
1 |Signal |Signal to compare against the test (left hand real
side)
2 |[Test |Comparison test real
Pin Outputs

Pin [Name Description Signal Type
3  |output |Result of the test |int

Notes/Equations

1. For EQ condition, Test outputs 1 if the following expression is satisfied (otherwise
output is 0):
test — signal|= Tolerance
For NE condition, Test outputs 1 if the following expression is satisfied (otherwise
output is 0):
test — signal|< Tolerance
For GT, GE, LT, or LE condition, Test outputs 1 if the following expression is satisfied
(otherwise output is 0):
(test) condition (signal)

2. For general information regarding numeric logic component signals, refer to Numeric
Logic Components (numeric).

391



Advanced Design System 2011.01 - Numeric Components

Description: Comparision test (equal to)

Library: Numeric, Logic

Class: SDFTest

C++ Code: See doc/sp_items/SDFTest.htm/ under your installation directory.

Parameters
Name Description Default Unit Type |lRange
Tolerance finite-precision parameter for EQ and NE conditions only 0.0 real |(-co,
)
CrossingsOnly |if True, output is True only when the test result toggles: False, |False enum
True
Pin Inputs
Pin [Name |Description Signal Type
1 |Signal |Signal to compare against the test (left hand side) |real
2 |[Test |Comparison test real
Pin Outputs

Pin [Name Description Signal Type
3  |output |Result of the test |int

Notes/Equations

1. TestEQ outputs 1 if the following expression is satisfied (otherwise output is 0):
|test — signal| < Tolerance

2. For general information regarding numeric logic component signals, refer to Numeric
Logic Components (numeric).

392



Advanced Design System 2011.01 - Numeric Components

TestGE

Description: Comparision test (greater than or equal to)

Library: Numeric, Logic

Class: SDFTest

C++ Code: See doc/sp_items/SDFTest.html under your installation directory.

Parameters
Name Description Default Unit Type Range
CrossingsOnly |if True, output is True only when the test result toggles: False, False enum
True
Pin Inputs
Pin [Name |Description Signal Type
1 |Signal |Signal to compare against the test (left hand side) |real
2 |Test |Comparison test real
Pin Outputs

Pin Name Description Signal Type
3 |output Result of the test |int

Notes/Equations

1. TestGE outputs 1 if the following expression is satisfied (otherwise output is 0):
(signal) GE (test)

2. For general information regarding numeric logic component signals, refer to Numeric
Logic Components (numeric).

393



Advanced Design System 2011.01 - Numeric Components

TestGT

Description: Comparision test (greater than)

Library: Numeric, Logic

Class: SDFTest

C++ Code: See doc/sp_items/SDFTest.htm/ under your installation directory.

Parameters
Name Description Default Unit Type Range
CrossingsOnly |if True, output is True only when the test result toggles: False, False enum
True
Pin Inputs
Pin [Name |Description Signal Type
1 |Signal |Signal to compare against the test (left hand side) |real
2 |Test |Comparison test real
Pin Outputs

Pin Name Description Signal Type
3 |output Result of the test |int

Notes/Equations

1. TestGT outputs 1 if the expression
(signal) GT (test)
is satisfied; otherwise output is 0.

2. For general information regarding numeric logic component signals, refer to Numeric
Logic Components (numeric).

394



Advanced Design System 2011.01 - Numeric Components

TestLE

Description: Comparision test (less than or equal to)

Library: Numeric, Logic

Class: SDFTest

C++ Code: See doc/sp_items/SDFTest.html under your installation directory.

Parameters
Name Description Default Unit Type Range
CrossingsOnly |if True, output is True only when the test result toggles: False, False enum
True
Pin Inputs
Pin [Name |Description Signal Type
1 |Signal |Signal to compare against the test (left hand side) |real
2 |Test |Comparison test real
Pin Outputs

Pin Name Description Signal Type
3 |output Result of the test |int

Notes/Equations

1. TestLE outputs 1 if the expression
(signal) LE (test)
is satisfied; otherwise output is 0.

2. For general information regarding numeric logic component signals, refer to Numeric
Logic Components (numeric).

395



Advanced Design System 2011.01 - Numeric Components

TestLT

Description: Comparision test (less than)

Library: Numeric, Logic

Class: SDFTest

C++ Code: See doc/sp_items/SDFTest.htm/ under your installation directory.

Parameters
Name Description Default Unit Type Range
CrossingsOnly |if True, output is True only when the test result toggles: False, False enum
True
Pin Inputs
Pin [Name |Description Signal Type
1 |Signal |Signal to compare against the test (left hand side) |real
2 |Test |Comparison test real
Pin Outputs

Pin Name Description Signal Type
3 |output Result of the test |int

Notes/Equations

1. TestLT outputs 1 if the expression
(signal) LT (test)
is satisfied; otherwise output is 0.

2. For general information regarding numeric logic component signals, refer to Numeric
Logic Components (numeric).

396



Advanced Design System 2011.01 - Numeric Components

TestNE

Description: Comparision test (not equal to)

Library: Numeric, Logic

Class: SDFTest

C++ Code: See doc/sp_items/SDFTest.htm/ under your installation directory.

Parameters
Name Description Default Unit Type |lRange
Tolerance finite-precision parameter for EQ and NE conditions only 0.0 real |(-co,
)
CrossingsOnly |if True, output is True only when the test result toggles: False, |False enum
True
Pin Inputs
Pin [Name |Description Signal Type
1 |Signal |Signal to compare against the test (left hand side) |real
2 |[Test |Comparison test real
Pin Outputs

Pin [Name Description Signal Type
3  |output |Result of the test |int

Notes/Equations

1. TestNE outputs 1 if the expression test — signal|> Tolerance is satisfied; otherwise,
output is 0.

2. For general information regarding numeric logic component signals, refer to Numeric
Logic Components (numeric).

397



Advanced Design System 2011.01 - Numeric Components

Numeric Math Components

Abs (numeric)
Add (numeric)
Add2 (numeric)
AddCx (numeric)
AddCx2 (numeric)
AddFix (numeric)
AddFix2 (numeric)
AddInt (numeric)
AddInt2 (numeric)
Average (numeric)
AverageCx (numeric)

AverageCxWOffset (numeric)

Cos (numeric)

DB (numeric)
DivByInt (numeric)
Exp (numeric)
Floor (numeric)
Gain (numeric)
GainCx (numeric)
GainFix (numeric)
GainInt (numeric)
Integrate (numeric)
Ln (numeric)

Math (numeric)
MathCx (numeric)
MaxMin (numeric)
Modulo (numeric)
ModuloInt (numeric)
Mpy (numeric)
Mpy2 (numeric)
MpyCx (numeric)
MpyCx2 (numeric)
MpyFix (numeric)
MpyFix2 (numeric)
MpyInt (numeric)
MpyInt2 (numeric)
Reciprocal (numeric)
SDC1 (numeric)
SDC2 (numeric)
SDC3 (numeric)
SDC4 (numeric)
SDCCx1 (numeric)
SDCCx2 (numeric)
SDCCx3 (numeric)
SDCCx4 (numeric)
Sgn (numeric)

Sin (numeric)

Sinc (numeric)
Sgrt (numeric)

398



Advanced Design System 2011.01 - Numeric Components

Sub (numeric)

SubCx (numeric)

SubFix (numeric)

SubInt (numeric)

Trig (numeric)

TrigCx (numeric)

Variance (numeric)

The Numeric Math components library contains integer, double precision floating-point
(real), fixed-point (fixed), and complex mathematical scalar operators. Each component
accepts a specific class of signal and outputs a resultant signal. (These components do not
accept any matrix class of signal.)

If a component receives another class of signal, the received signal is automatically
converted to the signal class specified as the input of the component. Auto conversion
from a higher to a lower precision signal class may result in loss of information. The auto
conversion from timed, complex or floating-point (real) signals to a fixed signal uses a
default bit width of 32 bits with the minimum number of integer bits needed to represent
the value. For example, the auto conversion of the floating-point (real) value of 1.0
creates a fixed-point value with precision of 2.30, and a value of 0.5 would create one of
precision of 1.31. For details on conversions between different classes of signals, refer to
Conversion of Data Types (ptolemy) in the ADS Ptolemy Simulation (ptolemy)
documentation.

Some components operate with fixed-point numbers. These components use one or more
parameters that define the characteristics of the fixed-point processing. These parameters
include: OverflowHandler, OutputPrecision, RoundFix, ReportOverflow, and others. For
details on the use of these parameters for fixed-point components refer to Parameters for
Fixed-Point Components (ptolemy) in the ADS Ptolemy Simulation (ptolemy)
documentation. The arithmetic used by these components is two's complement.
Therefore, all precision values must specify at least one bit to the left of the decimal point
(used as sign bit).

399



Advanced Design System 2011.01 - Numeric Components

Description: Absolute Value

Library: Numeric, Math

Class: SDFAbs

C++ Code: See doc/sp_items/SDFAbs.html under your installation directory.

Pin Inputs

Pin [Name Description Signal Type
1 Jinput real
Pin Outputs

Pin [Name Description [Signal Type
2 |output real

Notes/Equations

1. Abs outputs the absolute value of the input as a floating-point (real) value.
y(r) = |x(n)|
where:
y(n) is the output for sample n
x(n) is the input for sample n

2. For general information regarding numeric math component signals, refer to Numeric
Math Components (numeric).

400



Advanced Design System 2011.01 - Numeric Components

Add

Description: Multiple Input Adder

Library: Numeric, Math

Class: SDFAdd

C++ Code: See doc/sp_items/SDFAdd.html under your installation directory.

Pin Inputs

Pin Name Description Signal Type
1 |input multiple real
Pin Outputs

Pin Name Description |Signal Type
2 |output real
Notes/Equations

1. Add outputs the sum of inputs as a floating-point (real) value.
2. Two source outputs connected to the Add input as shown in the add schematic
below:

51 Al T1
Totep=0.0001 sec

VPeak=10V S0 I DF I
Frequency="1000.0 Hz

Phase=100 o f
s2 DF
TStep=0.0001 sec DefaulthumencStart=0
VPeak=10V DefaultMumencStop=100
Frequency=2000.0-Hz DefaultTimeStart=0 usec
Phase=200 DefaultTimeStop=10 msec

3. The Add output is shown in the add plot below:.

1_?‘ / | h

3 -\ ety il
3 |
L | AAA

time, msec
401



Advanced Design System 2011.01 - Numeric Components
4. For general information regarding numeric math component signals, refer to Numeric
Math Components (numeric).

402



Advanced Design System 2011.01 - Numeric Components

Description: 2-Input Adder
Library: Numeric, Math
Class: SDFAdd2

Pin Inputs

Pin /Name Description Signal Type

1 |inputl real
2 |input2 real
Pin Outputs

Pin Name Description |Signal Type
3  |output real

Notes

1. Add2 outputs the sum of the two inputs as a floating-point (real) value.
2. For general information regarding numeric math component signals, refer to Numeric
Math Components (numeric).

403



Advanced Design System 2011.01 - Numeric Components

AddCx

Description: Complex Multiple Input Adder

Library: Numeric, Math

Class: SDFAddCx

C++ Code: See doc/sp_items/SDFAddCx.html under your installation directory.

Pin Inputs

Pin [Name Description Signal Type

1 Jinput multiple complex
Pin Outputs

Pin [Name Description [Signal Type
2 |output complex

Notes/Equations

1. AddCx outputs the sum of inputs as a complex value.

2. For general information regarding numeric math component signals, refer to Numeric
Math Components (numeric).

404



Advanced Design System 2011.01 - Numeric Components

AddCx2

(-
Description: 2-Input Complex Adder
Library: Numeric, Math
Class: SDFAddCx2
Pin Inputs

Pin /Name Description Signal Type

1 |inputl complex
2 |input2 complex
Pin Outputs

Pin Name Description |Signal Type
3 |output complex

Notes

1. AddCx2 outputs the sum of the two inputs as a complex value.
2. For general information regarding numeric math component signals, refer to Numeric
Math Components (numeric).

405



Advanced Design System 2011.01 - Numeric Components

AddFix

1 ""2

Description: Fixed-Point Multiple Input Adder

Library: Numeric, Math

Class: SDFAddFix

Derived From: SDFFix

C++ Code: See doc/sp_items/SDFAddFix.html under your installation directory.

Parameters

Name Description Default Type

OverflowHandler output overflow characteristic: wrapped, saturate, zero_saturate, |wrapped |enum
warning

ReportOverflow simulation overflow error report option: DONT_REPORT, REPORT REPORT |enum

RoundFix fixed-point computations, assignments, and data type conversions TRUNCATE enum
option: TRUNCATE, ROUND

UseArrivingPrecision |use precision of arriving data: NO, YES NO enum

InputPrecision precision of input (used only if UseArrivingPrecision is set to NO) 2.14 precision

OutputPrecision precision of output in bits and accumulation 2.14 precision

Pin Inputs

Pin [Name |Description Signal Type
1 |input multiple fix
Pin Outputs

Pin [Name Description [Signal Type
2 |output fix

Notes/Equations

1. AddFix outputs the sum of inputs as a fixed-point value.

2. If the fixed-point operations cannot fit into the precision specified, overflow occurs
with the overflow characteristic specified by OverflowHandler. If ReportOverflow =
REPORT, after the simulation has finished the number of overflow errors (if any) will
be reported. RoundFix identifies whether fixed-point computations are truncate or
round method. If UseArrivingPrecision = NO, the input is cast to the precision
specified by InputPrecision.

For details on these fixed-point parameters refer to Parameters for Fixed-Point
Components (ptolemy) in the ADS Ptolemy Simulation (ptolemy) documentation.

3. If UseArrivingPrecision = YES, then components that send a NULL particle on their
first firing should not be connected at the input of this component. For example,
when a Delay component is connected at its input, such a NULL particle has a
precision of 1.0 and the output value will be forced to 0.

406



Advanced Design System 2011.01 - Numeric Components
4. For general information regarding numeric math component signals, refer to Numeric
Math Components (numeric).

407



Advanced Design System 2011.01 - Numeric Components

AddFix2

1 .‘3

Description: 2-Input Fixed-Point Adder
Library: Numeric, Math
Class: SDFAddFix2

Parameters

Name Description Default |Unit Type Range

OverflowHandler output overflow characteristic: wrapped, saturate, wrapped enum
zero saturate, warning

ReportOverflow simulation overflow error report: DONT REPORT, REPORT enum
REPORT

RoundFix fixed-point computations, assignments, and data type [TRUNCATE enum
conversions: TRUNCATE, ROUND

UseArrivingPrecision |use precision of arriving data: NO, YES NO enum

InputPrecision precision of input(used only if UseArrivingPrecision is |2.14 precision
set to NO)

OutputPrecision precision of output accumulation 2.14 precision

Pin Inputs

Pin [Name |Description Signal Type

1 |inputl fix
2 |input2 fix
Pin Outputs

Pin [Name Description [Signal Type
3 |output fix

Notes/Equations

1. AddFix2 outputs the sum of the two inputs as a fixed-point value with precision
specified by OutputPrecision.

2. If the fixed-point operations cannot fit into the precision specified, overflow occurs
with the overflow characteristic specified by OverflowHandler. If ReportOverflow =
REPORT, after the simulation has finished the nhumber of overflow errors (if any) will
be reported. RoundFix identifies whether fixed-point computations are truncate or
round method. If UseArrivingPrecision = NO, the input is cast to the precision
specified by InputPrecision.

For details on these fixed-point parameters refer to Parameters for Fixed-Point
Components (ptolemy) in the ADS Ptolemy Simulation (ptolemy) documentation.
3. If UseArrivingPrecision = YES, then components that send a NULL particle on their

first firing should not be connected at the input of this component. For example,
408



Advanced Design System 2011.01 - Numeric Components

when a Delay component is connected at its input, such a NULL particle has a
precision of 1.0 and the output value will be forced to 0.

409



Advanced Design System 2011.01 - Numeric Components

AddInt

Description: Integer Multiple Input Adder

Library: Numeric, Math

Class: SDFAddInt

C++ Code: See doc/sp_items/SDFAddInt.htm/ under your installation directory.

Pin Inputs

Pin [Name Description Signal Type
1 |input multiple int
Pin Outputs

Pin [Name Description [Signal Type
2 |output int

Notes/Equations

1. AddInt outputs the sum of inputs as an integer value.

410



Advanced Design System 2011.01 - Numeric Components

AddInt2

) >
Description: 2-Input Integer Adder
Library: Numeric, Math
Class: SDFAddInt2
Pin Inputs

Pin /Name Description Signal Type

1 |inputl int
2 |input2 int
Pin Outputs

Pin Name Description |Signal Type
3  |output int

Notes

1. AddInt2 outputs the sum of the two inputs as an integer value.

411



Advanced Design System 2011.01 - Numeric Components

Average

Description: Averager

Library: Numeric, Math

Class: SDFAverage

C++ Code: See doc/sp_items/SDFAverage.html under your installation directory.

Parameters

Name Description Default |Unit Type Range

NumInputsToAverage )number of input data items to average 8 int [1, c0)

BlockSize input blocks of this size will be averaged to produce an 1 int [1, )
output block

Pin Inputs

Pin Name Description Signal Type
1 |input real
Pin Outputs

Pin Name Description |Signal Type
2 |output real

Notes/Equations

1. Average calculates the output floating-point (real) average for a specified number of
input samples or blocks of input samples. Blocks of successive input samples are
treated as vectors and produce a block of output values.

412



Advanced Design System 2011.01 - Numeric Components

AverageCx

Description: Complex averager

Library: Numeric, Math

Class: SDFAverageCx

C++ Code: See doc/sp_items/SDFAverageCx.html under your installation directory.

Parameters

Name Description Default |Unit Type Range

NumInputsToAverage )number of input data items to average 8 int [1, c0)

BlockSize input blocks of this size will be averaged to produce an 1 int [1, )
output block

Pin Inputs

Pin Name Description Signal Type
1 |input complex
Pin Outputs

Pin Name Description |Signal Type
2 |output complex

Notes/Equations

1. AverageCx calculates the output complex average for a specified humber of input
samples or blocks of complex input samples. Blocks of successive input samples are
treated as vectors and produce a block of output values.

413



Advanced Design System 2011.01 - Numeric Components

AverageCxWOffset
2
Lyl X [

Description: Average Complex data with detected delay information
Library: Numeric, Math
Class: SDFAverageCxWOffset

Parameters

Name Description Default Unit Type Range
NumSymToAverage Number of symbols to average 256 int [1, o)
Pin Inputs

Pin /Name Description Signal Type

1  |Input |Input complex
2 |Offset Offset int
Pin Outputs

Pin Name |Description Signal Type
3 |Output Output complex

Notes/Equations

1. This component averages the RF received data using detected RF channel delay
information.

2. This is a single-rate component. Each firing, one input token is consumed for both
Input pin 1 and Offset pin 2, and one output token is produced.

3. Averaging is performed on pin 1 input data using pin 2 detected delay information.
The output is the averaged complex signal envelope.
For example, a DelayEstimator component can be used with AverageCxWOffset and
the detected delay sent from DelayEstimator; at the AverageCxWOffset output, the
average value is held constant for each NumSymToAverage sample.

References

1. M. Jeruchim, P. Balaban and K. Shanmugan, "Simulation of Communication System,"
Plenum Press, New York and London, 1992.

414



Advanced Design System 2011.01 - Numeric Components

Cos

1 .“ _"’2

Description: Cosine Function

Library: Numeric, Math

Class: SDFCos

C++ Code: See doc/sp_items/SDFCos.html under your installation directory.

Pin Inputs

Pin [Name Description Signal Type
1 Jinput real
Pin Outputs

Pin [Name Description [Signal Type
2 |output real

Notes/Equations

1. Cos calculates the cosine of its input, which is assumed to be an angle in radians.
y(n) = cos(x(n))
where:
y(n) is the output for sample n
x(n) is the input for sample n

415



Advanced Design System 2011.01 - Numeric Components

DB

Description: dB value

Library: Numeric, Math

Class: SDFDB

C++ Code: See doc/sp_items/SDFDB.html under your installation directory.

Parameters
Name Description Default Unit Type Range
Min minimum output value -100 real |(-oo,
)
Type |type of input signal measurement: Power as 10*log(input), |Amplitude as enum
Amplitude as 20*log(input) 20*log(input)
Pin Inputs

Pin [Name Description Signal Type
1 Jinput real
Pin Outputs

Pin [Name Description [Signal Type
2 |output real

Notes/Equations

1. DB converts the input value to floating-point (real) dB scale. Zero and negative
values are assigned the Min value.

2. If the input signal is a power measurement set Type to Power; if the input signal is
an amplitude measurement set Type to Amplitude.
If Type = Power as 10log(input):

IDlogmx(n] if lﬂlogmx(n] = Min

yin)=

Min otherwise

If Type = Power as 20log(input):
EDlogmx(n) if EDlogmx(n) = Min

y(n)=

Min otherwise

where:
y(n) is the output for sample n
x(n) is the input for sample n

416



Advanced Design System 2011.01 - Numeric Components

DivByInt

Description: Integer division

Library: Numeric, Math

Class: SDFDivByInt

C++ Code: See doc/sp_items/SDFDivByInt.html under your installation directory.

Parameters

Name Description |Default |Unit Type Range
Divisor |integer divisor |2 int (-c0, 0) or (0, c0)
Pin Inputs

Pin [Name |Description Signal Type
1 |input int
Pin Outputs

Pin [Name Description [Signal Type
2 |output int

Notes/Equations

1. DivBylnt calculates the integer output equal to the integer input divided by the
integer Divisor. Truncated integer division is used.

417



Advanced Design System 2011.01 - Numeric Components

Exp

1 _ _.'_2

Description: Exponential Function

Library: Numeric, Math

Class: SDFExp

C++ Code: See doc/sp_items/SDFExp.html under your installation directory.

Pin Inputs

Pin [Name Description Signal Type
1 Jinput real
Pin Outputs

Pin [Name Description [Signal Type
2 |output real

Notes/Equations

1. Exp calculates the floating-point (real) exponential function (base e) of the input.
y(n) = ¥
where:
y(n) is the output for sample n
x(n) is the input for sample n

2. The input value must be < In (maximum double-precision floating-point (real) value)
to avoid overflow.

418



Advanced Design System 2011.01 - Numeric Components

Floor

1 LXJ 2

Description: Floor Function

Library: Numeric, Math

Class: SDFFloor

C++ Code: See doc/sp_items/SDFFloor.html under your installation directory.

Pin Inputs

Pin [Name Description Signal Type
1 Jinput real
Pin Outputs

Pin [Name Description [Signal Type
2 |output int

Notes/Equations

1. Floor outputs the integer floor of the input.
y(n) = floor (x(n))
where:
y(n) is the output for sample n
x(n) is the input for sample n

419



Advanced Design System 2011.01 - Numeric Components

Gain

Description: gain value

Library: Numeric, Math

Class: SDFGain

C++ Code: See doc/sp_items/SDFGain.html under your installation directory.

Parameters

Name Description Default [Unit Type Range
Gain |gain value |1.0 real |(-oo, o0)
Pin Inputs

Pin [Name |Description Signal Type
1 Jinput real
Pin Outputs

Pin [Name Description [Signal Type
2 |output real

Notes/Equations

1. Gain calculates the floating-point (real) output equal to the input multiplied by Gain.

420



Advanced Design System 2011.01 - Numeric Components

GainCx

Description: Complex gain

Library: Numeric, Math

Class: SDFGainCx

C++ Code: See doc/sp_items/SDFGainCx.htm/ under your installation directory.

Parameters

Name Description Default Unit Type Range
Gain |gain value |1 complex
Pin Inputs

Pin [Name |Description Signal Type
1 Jinput complex
Pin Outputs

Pin [Name Description [Signal Type
2 |output complex

Notes/Equations

1. GainCx calculates the complex output equal to the input multiplied by the complex
Gain.

2. For details on complex parameter values, refer to Complex-Valued Parameters
(ptolemy) in the ADS Ptolemy Simulation (ptolemy) documentation.

421



Advanced Design System 2011.01 - Numeric Components

GainFix

1 ""2

Description: Fixed-Point Gain

Library: Numeric, Math

Class: SDFGainFix

Derived From: SDFFix

C++ Code: See doc/sp_items/SDFGainFix.htm/ under your installation directory.

Parameters

Name Description Default Type

OverflowHandler output overflow characteristic: wrapped, saturate, zero_saturate, |wrapped |enum
warning

ReportOverflow simulation overflow error report option: DONT_REPORT, REPORT REPORT |enum

RoundFix fixed-point computations, assignments, and data type conversions TRUNCATE enum
option: TRUNCATE, ROUND

Gain gain value 1.0 fix

UseArrivingPrecision |use precision of arriving data: NO, YES NO enum

InputPrecision precision of input (used only if UseArrivingPrecision is set to NO) 2.14 precision

OutputPrecision precision of output in bits and accumulation 2.14 precision

Pin Inputs

Pin [Name |Description Signal Type
1 |input fix
Pin Outputs

Pin [Name Description [Signal Type
2 |output fix

Notes/Equations

1. GainFix calculates the fixed-point output equal to the input multiplied by Gain.

2. If the fixed-point operations cannot fit into the precision specified, overflow occurs
with the overflow characteristic specified by OverflowHandler. If ReportOverflow =
REPORT, after the simulation has finished the number of overflow errors (if any) will
be reported. RoundFix identifies whether fixed-point computations are truncate or
round method. If UseArrivingPrecision = NO, the input is cast to the precision
specified by InputPrecision.

For details on these fixed-point parameters refer to Parameters for Fixed-Point
Components (ptolemy) in the ADS Ptolemy Simulation (ptolemy) documentation.

3. If UseArrivingPrecision = YES, then components that send a NULL particle on their

first firing should not be connected at the input of this component. For example,

when a Delay component is connected at its input, such a NULL particle has a
422



Advanced Design System 2011.01 - Numeric Components
precision of 1.0 and the output value will be forced to 0.

423



Advanced Design System 2011.01 - Numeric Components

GainInt

Description: Integer gain

Library: Numeric, Math

Class: SDFGainInt

C++ Code: See doc/sp_items/SDFGainInt.htm/ under your installation directory.

Parameters

Name Description Default [Unit Type Range
Gain |gain value |1 int (-0, )
Pin Inputs

Pin [Name |Description Signal Type
1 |input int
Pin Outputs

Pin [Name Description [Signal Type
2 |output int

Notes/Equations

1. GainInt calculates the integer output equal to the input multiplied by the integer
Gain.

424



Advanced Design System 2011.01 - Numeric Components

Integrate

frerles

Description: Integrator

Library: Numeric, Math

Class: SDFIntegrate

C++ Code: See doc/sp_items/SDFIntegrate.htm/ under your installation directory.

Parameters

Name Description Default Unit Type Range
FeedbackGain |gain on feedback path 1.0 real |(-co, o)
Top upper limit 0.0 real |(-co, )
Bottom lower limit 0.0 real |(-co0, )
Saturate perform saturation: NO, YES |YES enum

State an internal state 0.0 real |(-co, )
Pin Inputs

Pin /Name Description Signal Type

1 |data real

2  |reset int

Pin Outputs

Pin Name Description |Signal Type

3  |output real

Notes/Equations

1.

Integrate calculates the output floating-point (real) summation for a specified
number of input samples or blocks of input samples. Blocks of successive input
samples are treated as vectors and produce a block of output values.

. Integrate is an integrator with leakage, limits, and reset. With the default

parameters, input samples are simply accumulated, and the running sum is the
output. To prevent any resetting in the middle of a run, connect a Const source with
value 0 to the reset input. Otherwise, whenever a non-zero is received on this input,
the accumulated sum is reset to the current input (that is, no feedback).

. Limits are controlled by Top and Bottom. If Top < Bottom, no limiting is performed;

otherwise, the output is kept between Top and Bottom.

If Saturate = YES, saturation is performed. If Saturate = NO, wraparound is
performed. Limiting is performed before output.

Leakage is controlled by the FeedbackGain state. The output is the data input plus
FeedbackGain x State, where State is the previous output.

425



Advanced Design System 2011.01 - Numeric Components

426



Advanced Design System 2011.01 - Numeric Components

Ln

1| Nl»?

Description: Natural Log

Library: Numeric, Math

Class: SDFLn

C++ Code: See doc/sp_items/SDFLn.html under your installation directory.

Pin Inputs

Pin [Name Description Signal Type
1 Jinput real
Pin Outputs

Pin [Name Description [Signal Type
2 |output real

Notes/Equations

1. Ln outputs the floating-point (real) natural logarithm of the input.
y(n) = Inx(n)
where:
y(n) is the output for sample n
x(n) is the input for sample n
2. The input must be > 0.

427



Math

Advanced Design System 2011.01 - Numeric Components

Description: Math Function
Library: Numeric, Math
Class: SDFMath

Parameters
Name Description Default Unit Type |Range
Type |mathematical function: Abs, Ceil, Exp, Floor, Ln, Log10, Pow10, Recip, Abs enum

Round, Sqgr, Sqgrt

Pin Inputs

Pin [Name |Description Signal Type

1 |input |input signal |real

Pin Outputs

Pin [Name Description Signal Type

2 |output |output signal |real

Notes/Equations

1. Math performs the floating-point (real) mathematical functions:
y(n) = f( x(n))

where:

y( n ) is the output for sample n

x( n) is the input for sample n

and where f( ) is any function that can be selected from the Type parameter.
2. If Type = Abs, then y(n) = | x( n) |

If Type =

If Type

If Type
If Type
If Type

If Type
If Type
If Type

from two

-3)

Ceil, then y(n) = |_x(n)—|, where () <[x(r)<x(n)+1
Exp, then y(n) = e X(")
Floor, then y(n) = I_x(n)J, where *¥(7) —1<|x(r)]<x(r)

Ln, then y(n) = In(x(n))
Log10, then y(n) = log ;4 (x(n))

Pow10, then y(n) = 10 X(M
Recip, then y(n) = 1/ x(n)
Round, then y(n) = closest integer to x(n) (numbers at the same distance
integers map away from 0; for example, 2.5 maps to 3 and —2.5 maps to

If Type = Sqr, then y(n) = x(n) 2

If Type = Sqrt, then y(n) =

SJdEie)

428



Advanced Design System 2011.01 - Numeric Components

429



Advanced Design System 2011.01 - Numeric Components

MathCx

Description: Complex Math Function
Library: Numeric, Math

Class: SDFMathCx

Derived From: baseOmniSysNumericStar

Parameters
Name Description Default Unit Type Range
Type |mathematical function: Abs, Ceil, Exp, Floor, Ln, Log10, Pow10, Recip, Abs enum
Round, Sqgr, Sqrt, Conj
Pin Inputs

Pin /Name Description Signal Type
1 |input |input signal |complex
Pin Outputs

Pin Name Description Signal Type
2 |output output signal complex

Notes/Equations

1. MathCx performs the complex mathematical functions:
y(n) = f(x(n))
where:
y(n) is the output for sample n
x(n) is the input for sample n
and where f( ) is any function that can be selected from the Type parameter.

2. If Type = Abs, then y(n) = | x(n) | = JRE{_"C(””L””"{“”)F
If Type = Ceil, then y(n) = [Re{x(rn)}1+jx[Im{x(n)}] (see Ceil function of
Math component)
If Type = Exp, then y(n) = e X(") = e ReWX(N} (cos(Im{x(n)}) + j sin(Im{x(n)}))
If Type = Floor, then y(n) = [Re{x(n)}]+jx[Im{x(n)}] (see Floor function of
Math component) _
If Type = Ln, then y(n) = n(x(r))= In(lx(r)]) +jx £x(n) , where £%(1) s the
phase of x(n) in radians.
If Type = Log10, then y(n) = log ;4 (x(n)) = In(x(n)) / In(10).
If Type = Pow10, then y(n) = 10 X(N) = ¢ x(n) In(10)
If Type = Recip, then y(n) = 1/ x(n) = (Re{x (n)} — j Im {x(n)}) / | x(n) | 2
430



Advanced Design System 2011.01 - Numeric Components
If Type = Round, then y(n) = Round(Re{x(n)}) + j Round (Im{x(n)}) (see Round
function of Math component)

If Type = Sqr, then y(n) = x(n) 2

B Jx05% £x(n) o
If Type = Sqrt, then y(n) = ~*(17) =~ e (n)l xe , where <¥(7) s the
phase of x(n) in radians.

If Type = Conj, then y(n) = Belx(»)}-j Im{x(n)}

431



Advanced Design System 2011.01 - Numeric Components

MaxMin

Description: Maximum or minimum value

Library: Numeric, Math

Class: SDFMaxMin

C++ Code: See doc/sp_items/SDFMaxMin.htm/ under your installation directory.

Parameters

Name Description Default Unit Type Range
N default samples 10 int [0, o0)
MaxOrMin |output value: min, max max enum
Compare compare input value or magnitude: valueln, magnitudeln |valueln enum
OutputType |output value or magnitude: valueOut, magnitudeOut valueOut enum

Pin Inputs

Pin /Name Description Signal Type
1 input real
Pin Outputs

Pin Name Description |Signal Type
2 |output real
3 |index int

Notes/Equations

1. MaxMin finds the minimum or minimum value or magnitude of a fixed number of data
values on the input.

Use MaxMin to operate over multiple data streams by preceding it with a Commutator
and set the N state accordingly.

2. If Compare = valueln, the input with the maximum or minimum value is located; if
Compare = magnitudeln, the input with the maximum or minimum magnitude is
located.

3. If OutputType = magnitudeOut, the magnitude of the result is written to the output;
if OutputType = valueOut, the result itself is written to the output. Returns maximum
value among N input samples. The index of the output is also provided (count starts
at 0).

432



Advanced Design System 2011.01 - Numeric Components

Modulo

Description: Floating-point modulo

Library: Numeric, Math

Class: SDFModulo

C++ Code: See doc/sp_items/SDFModulo.html under your installation directory.

Parameters

Name |Description Default Unit Type Range
Modulo /modulo value 1.0 real |(-o0, 0) or (0, )
Pin Inputs

Pin [Name |Description Signal Type
1 Jinput |input signal |real
Pin Outputs

Pin [Name Description Signal Type
2 |output |output signal |real

Notes/Equations

1. Modulo outputs the floating-point (real) remainder with the same sign as input after
dividing the input by the Modulo parameter.
y(n) = fmod x(n)
where:
y(n) is the output for sample n
x(n) is the input for sample n

433



Advanced Design System 2011.01 - Numeric Components

ModuloInt

Description: Integer modulo

Library: Numeric, Math

Class: SDFModuloInt

C++ Code: See doc/sp_items/SDFModulolInt.htm/ under your installation directory.

Parameters

Name |Description Default Unit Type Range
Modulo /modulo value |10 int (-c0, 0) or (0, c0)
Pin Inputs

Pin [Name |Description Signal Type
1 Jinput |input signal |int
Pin Outputs

Pin [Name Description Signal Type
2  |output |output signal |int

Notes/Equations

1. Modulolnt outputs the integer remainder with the same sign as input after dividing
the input by the integer Modulo parameter.
¥(n) = mod x(n)
where:
y(n) is the output for sample n
x(n) is the input for sample n



Advanced Design System 2011.01 - Numeric Components

Description: Multiple Input Multiplier
Library: Numeric, Math
Class: SDFMpy

C++ Code: See doc/sp_items/SDFMpy.html under your installation directory.

Pin Inputs

Pin [Name Description Signal Type
1 Jinput multiple real
Pin Outputs

Pin [Name Description [Signal Type
2 |output real

Notes/Equations

1. Mpy outputs the product of inputs as a floating-point (real) value.

435



Advanced Design System 2011.01 - Numeric Components

Description: 2-Input Multiplier

Library: Numeric, Math

Class: SDFMpy

C++ Code: See doc/sp_items/SDFMpy.htm/ under your installation directory.

Pin Inputs

Pin Name |Description |Signal Type

1 |input#1 real
2 |input#2 real
Pin Outputs

Pin [Name Description [Signal Type
3 |output real

Notes/Equations

1. Mpy2 outputs the product of the two inputs as a floating-point (real) value.

436



Advanced Design System 2011.01 - Numeric Components

MpyCx

Description: Complex Multiple Input Multiplier

Library: Numeric, Math

Class: SDFMpyCx

C++ Code: See doc/sp_items/SDFMpyCx.html under your installation directory.

Pin Inputs

Pin [Name Description Signal Type

1 Jinput multiple complex
Pin Outputs

Pin [Name Description [Signal Type
2 |output complex

Notes/Equations

1. MpyCx outputs the product of the complex inputs as a complex value.

437



Advanced Design System 2011.01 - Numeric Components

Description: 2-Input Complex Multiplier

Library: Numeric, Math

Class: SDFMpyCx

C++ Code: See doc/sp_items/SDFMpyCx.html under your installation directory.

Pin Inputs

Pin Name |Description |Signal Type

1 |input#1 complex
2  |input#2 complex
Pin Outputs

Pin [Name Description [Signal Type
3 |output complex

Notes/Equations

1. MpyCx2 outputs the product of two inputs as a complex value.

438



Advanced Design System 2011.01 - Numeric Components

MpyFix

1 ""2

Description: Fixed-Point Multiple Input Multiplier

Library: Numeric, Math

Class: SDFMpyFix

Derived From: SDFFix

C++ Code: See doc/sp_items/SDFMpyFix.html under your installation directory.

Parameters

Name Description Default Type

OverflowHandler output overflow characteristic: wrapped, saturate, zero_saturate, |wrapped |enum
warning

ReportOverflow simulation overflow error report option: DONT_REPORT, REPORT REPORT |enum

RoundFix fixed-point computations, assignments, and data type conversions TRUNCATE enum
option: TRUNCATE, ROUND

UseArrivingPrecision |use precision of arriving data: NO, YES NO enum

InputPrecision precision of input (used only if UseArrivingPrecision is set to NO) 2.14 precision

OutputPrecision precision of output in bits and accumulation 2.14 precision

Pin Inputs

Pin [Name |Description Signal Type
1 |input multiple fix
Pin Outputs

Pin [Name Description [Signal Type
2 |output fix

Notes/Equations

1. MpyFix outputs the product of the inputs as a fixed-point value.

2. If the fixed-point operations cannot fit into the precision specified, overflow occurs
with the overflow characteristic specified by OverflowHandler. If ReportOverflow =
REPORT, after the simulation has finished the number of overflow errors (if any) will
be reported. RoundFix identifies whether fixed-point computations are truncate or
round method. If UseArrivingPrecision = NO, the input is cast to the precision
specified by InputPrecision.

For details on these fixed-point parameters refer to Parameters for Fixed-Point
Components (ptolemy) in the ADS Ptolemy Simulation (ptolemy) documentation.

3. If UseArrivingPrecision = YES, then components that send a NULL particle on their
first firing should not be connected at the input of this component. For example,
when a Delay component is connected at its input, such a NULL particle has a
precision of 1.0 and the output value will be forced to 0.

439



Advanced Design System 2011.01 - Numeric Components



Advanced Design System 2011.01 - Numeric Components

Description: 2-Input Fixed-Point Multiplier

Library: Numeric, Math

Class: SDFMpyFix

C++ Code: See doc/sp_items/SDFMpyFix.html under your installation directory.

Parameters

Name Description Default |Type

OverflowHandler output overflow characteristic: wrapped, saturate, zero_saturate, |wrapped |enum
warning

ReportOverflow simulation overflow error report option: DONT_REPORT, REPORT REPORT |enum

RoundFix fixed-point computations, assignments, and data type conversions |[TRUNCATE enum
option: TRUNCATE, ROUND

UseArrivingPrecision |use precision of arriving data: NO, YES NO enum

InputPrecision precision of input (used only if UseArrivingPrecision is set to NO) 2.14 precision

OutputPrecision precision of output in bits and accumulation 2.14 precision

Pin Inputs

Pin Name |Description |Signal Type

1 |input#1 fix
2 |input#2 fix
Pin Outputs

Pin Name Description |Signal Type
3  |output fix

Notes/Equations

1. MpyFix2 outputs the product of the two inputs as a fixed-point value.

2. If the fixed-point operations cannot fit into the precision specified, overflow occurs
with the overflow characteristic specified by OverflowHandler. If ReportOverflow =
REPORT, after the simulation has finished the number of overflow errors (if any) will
be reported. RoundFix identifies whether fixed-point computations are truncate or
round method. If UseArrivingPrecision = NO, the input is cast to the precision
specified by InputPrecision.

For details on these fixed-point parameters refer to Parameters for Fixed-Point
Components (ptolemy) in the ADS Ptolemy Simulation (ptolemy) documentation.

3. If UseArrivingPrecision = YES, then components that send a NULL particle on their
first firing should not be connected at the input of this component. For example,
when a Delay component is connected at its input, such a NULL particle has a

441



Advanced Design System 2011.01 - Numeric Components
precision of 1.0 and the output value will be forced to 0.

442



Advanced Design System 2011.01 - Numeric Components

MpylInt

Description: Integer Multiple Input Multiplier

Library: Numeric, Math

Class: SDFMpyInt

C++ Code: See doc/sp_items/SDFMpyInt.html under your installation directory.

Pin Inputs

Pin [Name Description Signal Type
1 |input multiple int
Pin Outputs

Pin [Name Description [Signal Type
2 |output int

Notes/Equations

1. Mpylnt outputs the product of the inputs as an integer value.



Advanced Design System 2011.01 - Numeric Components

Description: 2-Input Integer Multiplier

Library: Numeric, Math

Class: SDFMpyInt

C++ Code: See doc/sp_items/SDFMpyInt.html under your installation directory.

Pin Inputs

Pin Name |Description |Signal Type

1 |input#1 int
2  |input#2 int
Pin Outputs

Pin [Name Description [Signal Type
3 |output int

Notes/Equations

1. MpylInt2 outputs the product of two inputs as an integer value.



Advanced Design System 2011.01 - Numeric Components

Reciprocal

1 M BN

Description: Reciprocal function

Library: Numeric, Math

Class: SDFReciprocal

C++ Code: See doc/sp_items/SDFReciprocal.htm/ under your installation directory.

Parameters

Name Description Default Unit Type Range
MagLimit i/magnitude limit; non-zero limits the output magnitude 0.0 real |(-oco0, o)
Pin Inputs

Pin [Name |Description Signal Type
1 Jinput real
Pin Outputs

Pin [Name Description [Signal Type
2 |output real

Notes/Equations

1. Reciprocal calculates the reciprocal of the input, with an optional magnitude limit.
If MagLimit =10

U
yin) = ()

If MagLimit # 0 and input = 0
y(n) = MagLimit
If MagLimit #= 0 and input # 0

. . .
MagLimit if ) > MagLimit

1
= ¢ — MagLimit if —— < -MagLimit
y(n) = ¢ —Mag () < aglimi

L otherwise
| x(n)

where:
y(n) is the output for sample n
x(n) is the input for sample n

445



Advanced Design System 2011.01 - Numeric Components

SDC1

1 1 fiNsample) _.'_2

Description: 1-Input Symbolic Defined Component
Library: Numeric, Math
Class: SDFSDC

Parameters

Name Description Default Type

Expression |[Expression, function of 0.0 real
inputs

Pin Inputs

Pin [Name |Description Signal Type

1 input#1 anytype
Pin Outputs
Pin [Name Description Signal Type

2 |output |Numeric output signal real

Notes/Equations

1. This component generates numeric data output that is evaluated using an expression
based on input data. Expression can be any valid expression, following the syntax
used for writing expressions on a VAR block.

2. Input data is specified by predefined variables _v1, _v2, etc. where 1 and 2 is the
port number. The Expression can also be dependent on predefined variable, Nsample,
which is incremented for each firing of this component determined by the schedule.

446



Advanced Design System 2011.01 - Numeric Components

SDC2

2

1 4 f{Heampe} —FS

Description: 2-Input Symbolic Defined Component
Library: Numeric, Math
Class: SDFSDC

Parameters

Name Description Default Type

Expression |[Expression, function of 0.0 real
inputs

Pin Inputs

Pin [Name |Description Signal Type

1 input#1 anytype

2  |input#2 anytype

Pin Outputs

Pin [Name Description Signal Type

3  |output Numeric output signal real

Notes/Equations

1. This component generates numeric data output that is evaluated using an expression
based on input data. Expression can be any valid expression, following the syntax
used for writing expressions on a VAR block.

2. Input data is specified by predefined variables _v1, _v2, etc. where 1 and 2 is the
port number. The Expression can also be dependent on predefined variable, Nsample,
which is incremented for each firing of this component determined by the schedule.

447



Advanced Design System 2011.01 - Numeric Components

SDC3

3

2 fiNsample) _'..4

1

RS IRL ]

=5

Description: 3-Input Symbolic Defined Component
Library: Numeric, Math
Class: SDFSDC

Parameters

Name Description Default Type

Expression |[Expression, function of 0.0 real
inputs

Pin Inputs

Pin [Name |Description Signal Type

1 input#1 anytype

2  |input#2 anytype

3  |input#3 anytype

Pin Outputs

Pin [Name Description Signal Type

4  |output |[Numeric output signal |real

Notes/Equations

1. This component generates numeric data output that is evaluated using an expression
based on input data. Expression can be any valid expression, following the syntax
used for writing expressions on a VAR block.

2. Input data is specified by predefined variables _v1, _v2, etc. where 1 and 2 is the
port number. The Expression can also be dependent on predefined variable, Nsample,
which is incremented for each firing of this component determined by the schedule.



Advanced Design System 2011.01 - Numeric Components

SDC4

f{Msampe) —.-5

= |2 |G |

YYVY

—_ hd L B

Description: 4-Input Symbolic Defined Component
Library: Numeric, Math
Class: SDFSDC

Parameters

Name Description Default Type

Expression |Expression, function of 0.0 real
inputs

Pin Inputs

Pin Name |Description Signal Type

1 input#1 anytype

2  |linput#2 anytype

3  |input#3 anytype

4  |input#4 anytype

Pin Outputs

Pin [Name Description Signal Type

5 |output Numeric output signal real

Notes/Equations

1. This component generates numeric data output that is evaluated using an expression
based on input data. Expression can be any valid expression, following the syntax
used for writing expressions on a VAR block.

2. Input data is specified by predefined variables _v1, _v2, etc. where 1 and 2 is the
port number. The Expression can also be dependent on predefined variable, Nsample,
which is incremented for each firing of this component determined by the schedule.

449



Advanced Design System 2011.01 - Numeric Components

SDCCx1

1 f{Hsamgpla)

Description: 1-Input Symbolic Defined Component with Complex Output
Library: Numeric, Math
Class: SDFSDCCx

Parameters

Name Description Default Type

Expression |[Expression, function of 0.0+j*0.0 ,complex
inputs

Pin Inputs

Pin [Name |Description Signal Type

1 input#1 anytype
Pin Outputs
Pin [Name Description Signal Type

2 |output Numeric output signal |complex

Notes/Equations

1. This component generates complex data output that is evaluated using an expression
based on input data. Expression can be any valid expression, following the syntax
used for writing expressions on a VAR block.

2. Input data is specified by predefined variables _v1, _v2, etc. where 1 and 2 is the
port number. The Expression can also be dependent on predefined variable, Nsample,
which is incremented for each firing of this component determined by the schedule.

450



Advanced Design System 2011.01 - Numeric Components

SDCCx2
f f fiNsample) 2

Description: 2-Input Symbolic Defined Component with Complex Output
Library: Numeric, Math
Class: SDFSDCCx

Parameters

Name Description Default Type

Expression |[Expression, function of 0.0+j*0.0 ,complex
inputs

Pin Inputs

Pin [Name |Description Signal Type

1 input#1 anytype

2  |input#2 anytype

Pin Outputs

Pin [Name Description Signal Type

3 |output Numeric output signal complex

Notes/Equations

1. This component generates complex data output that is evaluated using an expression
based on input data. Expression can be any valid expression, following the syntax
used for writing expressions on a VAR block.

2. Input data is specified by predefined variables _v1, _v2, etc. where 1 and 2 is the
port number. The Expression can also be dependent on predefined variable, Nsample,
which is incremented for each firing of this component determined by the schedule.

451



Advanced Design System 2011.01 - Numeric Components

SDCCx3

L]

3
2 fiMsample)
1

= |
B

Description: 3-Input Symbolic Defined Component with Complex Output
Library: Numeric, Math
Class: SDFSDCCx

Parameters

Name Description Default Type

Expression |[Expression, function of 0.0+j*0.0 ,complex
inputs

Pin Inputs

Pin Name |Description Signal Type

1 input#1 anytype

2  |input#2 anytype

3  |input#3 anytype

Pin Outputs

Pin [Name Description Signal Type

4  |output |Numeric output signal |complex

Notes/Equations

1. This component generates complex data output that is evaluated using an expression
based on input data. Expression can be any valid expression, following the syntax
used for writing expressions on a VAR block.

2. Input data is specified by predefined variables _v1, _v2, etc. where 1 and 2 is the
port number. The Expression can also be dependent on predefined variable, Nsample,
which is incremented for each firing of this component determined by the schedule.

452



Advanced Design System 2011.01 - Numeric Components

SDCCx4

s phe)

= |2 |G |

YYVYy

n

3 5
2 i

1

Description: 4-Input Symbolic Defined Component with Complex Output
Library: Numeric, Math
Class: SDFSDCCx

Parameters

Name Description Default Type

Expression |Expression, function of 0.0+j*0.0 complex
inputs

Pin Inputs

Pin Name |Description Signal Type

1 input#1 anytype

2  |linput#2 anytype

3  |input#3 anytype

4  |input#4 anytype

Pin Outputs

Pin [Name Description Signal Type

5 |output Numeric output signal |complex

Notes/Equations

1. This component generates complex data output that is evaluated using an expression
based on input data. Expression can be any valid expression, following the syntax
used for writing expressions on a VAR block.

2. Input data is specified by predefined variables _v1, _v2, etc. where 1 and 2 is the
port number. The Expression can also be dependent on predefined variable, Nsample,
which is incremented for each firing of this component determined by the schedule.

453



Advanced Design System 2011.01 - Numeric Components

Description: Signum Function

Library: Numeric, Math

Class: SDFSgn

C++ Code: See doc/sp_items/SDFSgn.html under your installation directory.

Pin Inputs

Pin [Name Description Signal Type
1 Jinput real
Pin Outputs

Pin [Name Description [Signal Type
2 |output int

Notes/Equations

1. Sgn calculates the signum of the input.
y(n) = sign of x(n)
where
y(n) is the output for sample n
x(n) is the input for sample n
2. The outputis 1 if x = 0. The output is —1 if x < 0.

454



Advanced Design System 2011.01 - Numeric Components

Description: Sine Function

Library: Numeric, Math

Class: SDFSin

C++ Code: See doc/sp_items/SDFSin.htm/ under your installation directory.

Pin Inputs

Pin [Name Description Signal Type
1 Jinput real
Pin Outputs

Pin [Name Description [Signal Type
2 |output real

Notes/Equations

1. Sin calculates the sine of its input, which is assumed to be an angle in radians.
y(n)) = sin (x(n))
where
y(n) is the output for sample n
x(n) is the input for sample n

455



Advanced Design System 2011.01 - Numeric Components

Description: Sinc Function

Library: Numeric, Math

Class: SDFSinc

C++ Code: See doc/sp_items/SDFSinc.html under your installation directory.

Pin Inputs

Pin [Name |Description Signal Type
1 |input |The input x to the sinc function. |real

Pin Outputs

Pin [Name Description Signal Type

2 |output [The output of the sinc function. real

Notes/Equations

1. Sinc calculates the floating-point (real) sinc of its input given in radians. The sinc
function is defined as sin(x)/x, with value 1.0 when x = 0.

456



Advanced Design System 2011.01 - Numeric Components

Description: Square Root Function

Library: Numeric, Math

Class: SDFSqrt

C++ Code: See doc/sp_items/SDFSqrt.html under your installation directory.

Pin Inputs

Pin [Name Description Signal Type
1 Jinput real
Pin Outputs

Pin [Name Description [Signal Type
2 |output real

Notes/Equations

1. Sqgrt calculates the floating-point (real) square root of the input.
y(r) = Jx(n)

where

y(n) is the output for sample n

x(n) is the input for sample n
2. The input value must be > 0.

457



Advanced Design System 2011.01 - Numeric Components

Sub

|_I.

FS

Description: Multiple Input Subtractor

Library: Numeric, Math

Class: SDFSub

C++ Code: See doc/sp_items/SDFSub.html under your installation directory.

Pin Inputs

Pin Name Description Signal Type

1 |pos real
2 |neg multiple real
Pin Outputs

Pin [Name Description [Signal Type
3 |output real

Notes/Equations

1. Sub outputs inputl minus all input2 values as a floating-point (real) value.

458



Advanced Design System 2011.01 - Numeric Components

Description: Complex Multiple Input Subtractor

Library: Numeric, Math

Class: SDFSubCx

C++ Code: See doc/sp_items/SDFSubCx.html under your installation directory.

Pin Inputs

Pin Name Description Signal Type

1 |pos complex
2 |neg multiple complex
Pin Outputs

Pin [Name Description [Signal Type
3 |output complex

Notes/Equations

1. SubCx outputs inputl minus all input2 values as a complex value.

459



Advanced Design System 2011.01 - Numeric Components

SubFix

Description: Fixed-Point Multiple Input Subtractor

Library: Numeric, Math

Class: SDFSubFix

Derived From: SDFFix

C++ Code: See doc/sp_items/SDFSubFix.html under your installation directory.

Parameters

Name Description Default Type

OverflowHandler output overflow characteristic: wrapped, saturate, zero_saturate, |wrapped |enum
warning

ReportOverflow simulation overflow error report option: DONT_REPORT, REPORT REPORT |enum

RoundFix fixed-point computations, assignments, and data type conversions TRUNCATE enum
option: TRUNCATE, ROUND

UseArrivingPrecision |use precision of arriving data: NO, YES NO enum

InputPrecision precision of input (used only if UseArrivingPrecision is set to NO) 2.14 precision

OutputPrecision precision of output in bits and accumulation 2.14 precision

Pin Inputs

Pin Name Description Signal Type

1 |pos fix
2 |neg multiple fix
Pin Outputs

Pin [Name Description [Signal Type
3 |output fix

Notes/Equations

1. SubFix outputs inputl minus all input2 values as a fixed-point value.

2. If the fixed-point operations cannot fit into the precision specified, overflow occurs
with the overflow characteristic specified by OverflowHandler. If ReportOverflow =
REPORT, after the simulation has finished the number of overflow errors (if any) will
be reported. RoundFix identifies whether fixed-point computations are truncate or
round method. If UseArrivingPrecision = NO, the input is cast to the precision
specified by InputPrecision.

For details on these fixed-point parameters refer to Parameters for Fixed-Point
Components (ptolemy) in the ADS Ptolemy Simulation (ptolemy) documentation.

3. If UseArrivingPrecision = YES, then components that send a NULL particle on their

first firing should not be connected at the input of this component. For example,

460



Advanced Design System 2011.01 - Numeric Components
when a Delay component is connected at its input, such a NULL particle has a
precision of 1.0 and the output value will be forced to 0.

461



Advanced Design System 2011.01 - Numeric Components

SubInt

1®3

Description: Integer Multiple Input Subtractor

Library: Numeric, Math

Class: SDFSublnt

C++ Code: See doc/sp_items/SDFSubInt.html under your installation directory.

Pin Inputs

Pin Name Description Signal Type

1 |pos int
2 |neg multiple int
Pin Outputs

Pin [Name Description [Signal Type
3 |output int

Notes/Equations

1. Sublnt outputs inputl minus all input2 values as an integer value.

462



Advanced Design System 2011.01 - Numeric Components

Lh_bz

Description: Trigonometric function
Library: Numeric, Math

Class: SDFTrig

Derived From: baseOmniSysNumericStar

Parameters

Name Description

Type [function: Sin, Cos, Tan, Cot, Asin, Acos, Atan, Acot, Sinh, Cosh, Tanh,
Coth, Asinh, Acosh, Atanh, Acoth

Pin Inputs

Pin /Name Description Signal Type
1 |input |input signal |real
Pin Outputs

Pin Name Description Signal Type
2 |output output signal |real

Notes/Equations

1. Trig performs the floating-point (real) trigonometric functions:

v, (1) = f(vy (1)

Default Unit Type Range

Sin

enum

where f( ) is any of the functions that can be selected from the Type parameter.

2. All angles are in radians.

463



Advanced Design System 2011.01 - Numeric Components

TrigCx

Description: Complex trigonometric function
Library: Numeric, Math

Class: SDFTrigCx

Derived From: baseOmniSysNumericStar

Parameters

Name Description Default Unit Type Range

Type [function: Sin, Cos, Tan, Cot, Asin, Acos, Atan, Acot, Sinh, Cosh, Tanh, Sin enum
Coth, Asinh, Acosh, Atanh, Acoth
Pin Inputs

Pin /Name Description Signal Type
1 |input |input signal |complex
Pin Outputs

Pin Name Description Signal Type
2 |output output signal complex

Notes/Equations

1. This component performs the complex trigonometric functions:
v, (0) = (v (B)

where f( ) is any of the functions that can be selected from the Type parameter.
2. All angles are in radians.

464



Advanced Design System 2011.01 - Numeric Components

Variance

Description: Variance function
Library: Numeric, Math
Class: SDFVariance

Parameters

Name Description Default |Unit Type Range

BlockSize [number of inputs to process between each mean and variance 1 int [1, c0)
estimate

Pin Inputs

Pin [Name |Description Signal Type
1 |in real
Pin Outputs

Pin [Name |Description Signal Type
2 |mean real

3 |variance real

Notes/Equations

1. Variance calculates a running floating-point (real) estimate of the mean and variance
of the inputs.

465



Advanced Design System 2011.01 - Numeric Components

Numeric Matrix Components

Abs M (numeric)

Add2 M (numeric)
AddCx2 M (numeric)
AddCx M (numeric)
AddFix2 M (numeric)
AddFix M (numeric)
AddInt2 M (numeric)
AddInt M (numeric)
Add M (numeric)
AvgSqrErr M (numeric)
Conjugate M (numeric)
Delay M (numeric)
GainCx M (numeric)
GainFix M (numeric)
GainInt M (numeric)
Gain M (numeric)
Hermitian M (numeric)
InverseCx M (numeric)
InverseFix M (numeric)
InverseInt M (numeric)
Inverse M (numeric)
Kalman M (numeric)
MpyCx M (numeric)
MpyFix M (numeric)
MpyInt M (numeric)
Mpy M (numeric)
MpyScalarCx M (numeric)
MpyScalarFix M (numeric)
MpyScalarInt M (numeric)
MpyScalar M (numeric)
MxCom M (numeric)
MxDecom M (numeric)
PackCx M (numeric)
PackFix M (numeric)
PackInt M (numeric)
Pack M (numeric)
SampleMean M (numeric)
SubCx M (numeric)
SubFix M (numeric)
SubInt M (numeric)
Sub M (numeric)
SubMxCx M (numeric)
SubMxFix M (numeric)
SubMxInt M (numeric)
SubMx M (numeric)
SVD M (numeric)
TableCx M (numeric)
TableInt M (numeric)
Table M (numeric)

466



Advanced Design System 2011.01 - Numeric Components
ToeplitzCx M (numeric)
ToeplitzFix M (numeric)
ToeplitzInt M (numeric)
Toeplitz M (numeric)
TransposeCx M (numeric)
TransposeFix M (numeric)
Transposelnt M (numeric)
Transpose M (numeric)
UnPkCx M (numeric)
UnPkFix M (numeric)
UnPkInt M (numeric)
UnPk M (numeric)

Numeric matrix components provide basic matrix data processing functions such as matrix
addition, multiplication, inversion and more and operate on matrix data sets that are
integer, double precision floating-point (real)), fixed-point (fixed), or complex values.
Each component accepts a specific class of signal and outputs a resultant signal. (These
components do not accept any scalar class of signal.)

If a component receives another class of signal, the received signal is automatically
converted to the signal class specified as the input of the component. Auto conversion
from a higher to a lower precision signal class may result in loss of information. The auto
conversion from complex or floating-point (real) signals to a fixed signal uses a default bit
width of 32 bits with the minimum number of integer bits needed to represent the value.
For example, the auto conversion of the floating-point (real) value of 1.0 creates a fixed-
point value with precision of 2.30; a value of 0.5 creates one with a precision of 1.31. For
details on conversions between different classes of signals, refer to Conversion of Data
Types (ptolemy) in the ADS Ptolemy Simulation (ptolemy) documentation.

Some components accept parameter values that are arrays of data. The syntax for
referencing arrays of data as parameter values includes an explicit list of values, a
reference to a file that contains those values, or a combination of explicit values along
with file references. For details on using arrays of data for parameter values, refer to
Understanding Parameters (ptolemy) in the ADS Ptolemy Simulation (ptolemy)
documentation.

Some components operate with fixed-point numbers. These components use one or more
parameters that define the characteristics of the fixed-point processing. These parameters
include: OverflowHandler, OutputPrecision, RoundFix, ReportOverflow, and others. For
details on the use of these parameters for fixed-point components refer to Parameters for
Fixed-Point Components (ptolemy) in the ADS Ptolemy Simulation (ptolemy)
documentation. The arithmetic used by these components is two's complement.
Therefore, all precision values must specify at least one bit to the left of the decimal point
(used as sign bit).

467



Advanced Design System 2011.01 - Numeric Components

b |

Description: Absolute Value Matrix

Library: Numeric, Matrix

Class: SDFAbs_M

Derived From: MatrixBase

C++ Code: See doc/sp_items/SDFAbs_M.html under your installation directory.

Pin Inputs

Pin [Name |Description Signal Type

1 |input real matrix
Pin Outputs

Pin [Name Description [Signal Type
2 |output real matrix

Notes/Equations

1. Abs_M outputs a matrix composed of the absolute value of each entry of the input
matrix.

2. For general information regarding numeric matrix component signals, refer to
Numeric Matrix Components (numeric).

468



Advanced Design System 2011.01 - Numeric Components

Description: 2-Input Matrix Adder

Library: Numeric, Matrix

Class: SDFAdd_M

C++ Code: See doc/sp_items/SDFAdd _M.html under your installation directory.

Pin Inputs

Pin [Name |Description Signal Type

1 |input#1 real matrix
2 |input#2 real matrix
Pin Outputs

Pin [Name Description [Signal Type
3  |output real matrix

Notes

1. Add2 adds the two inputs and outputs the resulting matrix. The two input matrix
signals must have the same matrix row and column values, otherwise an error will be
reported.

2. For general information regarding numeric matrix component signals, refer to
Numeric Matrix Components (numeric).

469



Advanced Design System 2011.01 - Numeric Components

AddCx2_M

Description: 2-Input Complex Matrix Adder
Library: Numeric, Matrix

Class: SDFAddCx_M

Pin Inputs

Pin Name |Description |Signal Type

1 |input#1 complex matrix
2 |input#2 complex matrix
Pin Outputs

Pin [Name Description [Signal Type
3 |output complex matrix

Notes

1. AddCx2_M adds the two inputs and outputs the resulting matrix. The two input
matrix signals must have the same matrix row and column values, otherwise an error
will be reported.

2. For general information regarding numeric matrix component signals, refer to
Numeric Matrix Components (numeric).

470



Advanced Design System 2011.01 - Numeric Components

AddCx_ M

Description: Complex Matrix Adder
Library: Numeric, Matrix

Class: SDFAddCx_M

Derived From: MatrixBase

Pin Inputs

Pin [Name Description Signal Type

1 |input multiple complex matrix
Pin Outputs

Pin [Name Description [Signal Type

2  |output complex matrix

Notes/Equations

1. AddCx_M adds all input matrices and outputs the resulting matrix.
2. All input matrices must be of the same dimensions.
3

For general information regarding numeric matrix component signals, refer to
Numeric Matrix Components (numeric).

471



Advanced Design System 2011.01 - Numeric Components

AddFix2_M

Description: 2-Input Fixed-Point Matrix Adder
Library: Numeric, Matrix
Class: SDFAddFix_M

Parameters

Name Description Default |Type

OverflowHandler output overflow characteristic: wrapped, saturate, zero_saturate, |wrapped enum
warning

ReportOverflow simulation overflow error report option: DONT_REPORT, REPORT REPORT |enum

RoundFix fixed-point computations, assignments, and data type conversions |[TRUNCATE enum
option: TRUNCATE, ROUND

UseArrivingPrecision |use precision of arriving matrices: NO, YES NO enum

InputPrecision precision of input matrix elements, in bits (used only if 2.14 precision
UseArrivingPrecision is set to NO)

OutputPrecision precision of output in bits and accumulation 2.14 precision

Pin Inputs

Pin Name |Description |Signal Type

1 |input#1 fix matrix
2  |input#2 fix matrix
Pin Outputs

Pin [Name Description [Signal Type
3 |output fix matrix

Notes/Equations

1. AddFix2_ M adds the two inputs and outputs the resulting matrix with precision
specified by OutputPrecision. The two input matrix signals must have the same
matrix row and column values, otherwise an error will be reported.

2. If the fixed-point operations cannot fit into the precision specified, overflow occurs
with the overflow characteristic specified by OverflowHandler. If ReportOverflow =
REPORT, after the simulation has finished the number of overflow errors (if any) will
be reported. RoundFix identifies whether fixed-point computations are truncate or
round method. If UseArrivingPrecision = NO, the input is cast to the precision
specified by InputPrecision.

For details on these fixed-point parameters refer to Parameters for Fixed-Point
Components (ptolemy) in the ADS Ptolemy Simulation (ptolemy) documentation.

3. If UseArrivingPrecision = YES, then components that send a NULL particle on their

first firing should not be connected at the input of this component. For example,
472



Advanced Design System 2011.01 - Numeric Components

when a Delay component is connected at its input, such a NULL particle has a
precision of 1.0 and the output value will be forced to 0.

4. For general information regarding numeric matrix component signals, refer to
Numeric Matrix Components (numeric).

473



Advanced Design System 2011.01 - Numeric Components

AddFix_M

—

Ll

|

Lo - 2

]
(LIl

Description: Fixed Matrix Adder
Library: Numeric, Matrix

Class: SDFAddFix_M

Derived From: SDFFix

Parameters

Name Description Default Type

OverflowHandler output overflow characteristic: wrapped, saturate, zero_saturate, |wrapped |enum
warning

ReportOverflow simulation overflow error report option: DONT_REPORT, REPORT REPORT |enum

RoundFix fixed-point computations, assignments, and data type conversions |[TRUNCATE enum
option: TRUNCATE, ROUND

UseArrivingPrecision |use precision of arriving matrices: NO, YES NO enum

InputPrecision precision of input matrix elements, in bits (used only if 2.14 precision
UseArrivingPrecision is set to NO)

OutputPrecision precision of output in bits and accumulation 2.14 precision

Pin Inputs

Pin [Name |Description Signal Type

1 |input multiple fix
matrix

Pin Outputs

Pin /Name Description |Signal Type
2 |output fix matrix

Notes/Equations

1. AddFix_M adds all input matrices and outputs the resulting matrix. If the result of the
sum for any entry in the matrix cannot be fit into the precision of the output,
overflow occurs and is handled by OverflowHandler.

2. All input matrices must be of the same dimensions.

3. If the fixed-point operations cannot fit into the precision specified, overflow occurs
with the overflow characteristic specified by OverflowHandler. If ReportOverflow =
REPORT, after the simulation has finished the number of overflow errors (if any) will
be reported. RoundFix identifies whether fixed-point computations are truncate or
round method. If UseArrivingPrecision = NO, the input is cast to the precision
specified by InputPrecision.

For details on these fixed-point parameters refer to Parameters for Fixed-Point
Components (ptolemy) in the ADS Ptolemy Simulation (ptolemy) documentation.

474



Advanced Design System 2011.01 - Numeric Components
4. If UseArrivingPrecision = YES, then components that send a NULL particle on their
first firing should not be connected at the input of this component. For example,
when a Delay component is connected at its input, such a NULL particle has a
precision of 1.0 and the output value will be forced to 0.
5. For general information regarding numeric matrix component signals, refer to
Numeric Matrix Components (numeric).

475



Advanced Design System 2011.01 - Numeric Components

AddInt2_M

Description: 2-Input Integer Matrix Adder
Library: Numeric, Matrix

Class: SDFAddInt_M

Pin Inputs

Pin Name |Description |Signal Type

1 |input#1 int matrix
2 |input#2 int matrix
Pin Outputs

Pin [Name Description [Signal Type
3 |output int matrix

Notes/Equations

1. AddInt2_M adds the two inputs and outputs the resulting matrix. The two input
matrix signals must have the same matrix row and column values, otherwise an error
will be reported.

2. For general information regarding numeric matrix component signals, refer to
Numeric Matrix Components (numeric).

476



Advanced Design System 2011.01 - Numeric Components

AddInt_M

sz

L]
=)

-

|

Description: Integer Matrix Adder
Library: Numeric, Matrix

Class: SDFAddInt_M

Derived From: MatrixBase

Pin Inputs

Pin [Name Description Signal Type

1 |input multiple int
matrix

Pin Outputs

Pin /Name Description |Signal Type
2 |output int matrix

Notes/Equations

1. AddInt_M adds all input matrices and outputs the resulting matrix. All input matrices
must be of the same dimensions.

2. For general information regarding numeric matrix component signals, refer to
Numeric Matrix Components (numeric).

477



Advanced Design System 2011.01 - Numeric Components

Description: Matrix Adder

Library: Numeric, Matrix

Class: SDFAdd_M

Derived From: MatrixBase

C++ Code: See doc/sp_items/SDFAdd_M.htm! under your installation directory.

Pin Inputs

Pin [Name |Description Signal Type

1 |input multiple real
matrix

Pin Outputs

Pin Name Description |Signal Type
2 |output real matrix

Notes/Equations

1. Add_M adds all input matrices together and outputs the resulting matrix. All input
matrices must be of the same dimensions.

2. For general information regarding numeric matrix component signals, refer to
Numeric Matrix Components (numeric).

478



Advanced Design System 2011.01 - Numeric Components

AvgSqrErr_M

Description: Average Mean Squared Error Matrix
Library: Numeric, Matrix

Class: SDFAvgSqrErr_M

Derived From: MatrixBase

Parameters

Name Description Default Type Range
NumInputs |[number of input matrices to average |8 int [1, o0)
Pin Inputs

Pin [Name |Description Signal Type

1 |inputl real matrix
2 |input2 real matrix
Pin Outputs

Pin [Name Description [Signal Type
3  |output real

Notes/Equations

1. AvgSqrErr_M computes the average mean squared error over a set of input matrix
pairs. The squared error between each corresponding element of a pair of input
matrices (inputl and input2) is computed and the errors from each element are
summed together. The sums are then averaged over the number of input matrix
pairs. NumInputs gives the number of consecutive input matrix pairs that are
averaged.

2. For general information regarding numeric matrix component signals, refer to
Numeric Matrix Components (numeric).

479



Advanced Design System 2011.01 - Numeric Components

Conjugate_M

Description: Conjugate Matrix
Library: Numeric, Matrix
Class: SDFConjugate_M
Derived From: MatrixBase

Pin Inputs

Pin [Name Description Signal Type

1 |input complex matrix
Pin Outputs

Pin [Name Description [Signal Type

2  |output complex matrix

Notes/Equations

1. Conjugate_M outputs the conjugate of the input matrix. Each element of the output
matrix is the complex conjugate of the corresponding input matrix element.

2. For general information regarding numeric matrix component signals, refer to
Numeric Matrix Components (numeric).

480



Advanced Design System 2011.01 - Numeric Components

Description: Matrix Delay Component
Library: Numeric, Matrix

Class: HOFDelay_M

Derived From: Delay

Parameters

Name Description Default Type Range
N N 1 int [0, )
NumRows number of rows in initial matrix 2 int [1, )
NumcCols number of columns in initial matrix |2 int [1, )
InitialMatrixContents |contents of CustomMatrix 1001 |string

Pin Inputs

Pin /Name Description Signal Type
1 input multiple anytype
Pin Outputs

Pin Name Description |Signal Type
2 |output multiple anytype

Notes/Equations

1. Delay_M adds N initial matrices to the output signal.

2. For general information regarding numeric matrix component signals, refer to
Numeric Matrix Components (numeric).

3. The parameters N, NumRows, and NumCols cannot be swept.

481



Advanced Design System 2011.01 - Numeric Components

GainCx_M

Description: Complex Gain Matrix
Library: Numeric, Matrix

Class: SDFGainCx_M

Derived From: MatrixBase

Parameters

Name Description

Gain |gain to be multiplied with each entry of the input
matrix

Pin Inputs

Pin /Name Description Signal Type
1 |input complex matrix
Pin Outputs

Pin Name Description |Signal Type
2 |output complex matrix

Notes/Equations

Default Type
1 complex

1. GainCx_M multiplies a complex matrix by a scalar complex gain value given by the

Gain parameter.

2. For details on complex parameter values, refer to Complex-Valued Parameters
(ptolemy) in the ADS Ptolemy Simulation (ptolemy) documentation.
3. For general information regarding numeric matrix component signals, refer to

Numeric Matrix Components (numeric).

482



Advanced Design System 2011.01 - Numeric Components

Description: Fixed-Point Gain Matrix
Library: Numeric, Matrix

Class: SDFGainFix_M

Derived From: SDFFix

Parameters

Name Description Default Type

OverflowHandler output overflow characteristic: wrapped, saturate, zero_saturate, |wrapped |enum
warning

ReportOverflow simulation overflow error report option: DONT_REPORT, REPORT REPORT |enum

RoundFix fixed-point computations, assignments, and data type conversions |[TRUNCATE enum
option: TRUNCATE, ROUND

Gain gain to be multiplied with each input matrix entry 1.0 fix

UseArrivingPrecision |use precision of arriving data: NO, YES NO enum

InputPrecision precision of input matrix elements, in bits (used only if 2.14 precision
UseArrivingPrecision is set to NO)

OutputPrecision precision of output in bits and accumulation 2.14 precision

Pin Inputs

Pin [Name |Description Signal Type
1 |input fix matrix
Pin Outputs

Pin [Name Description [Signal Type
2 |output fix matrix

Notes/Equations

1. GainFix_M multiplies a fixed-point matrix by a fixed-point scalar given by the Gain
parameter.

2. If the fixed-point operations cannot fit into the precision specified, overflow occurs
with the overflow characteristic specified by OverflowHandler. If ReportOverflow =
REPORT, after the simulation has finished the number of overflow errors (if any) will
be reported. RoundFix identifies whether fixed-point computations are truncate or
round method. If UseArrivingPrecision = NO, the input is cast to the precision
specified by InputPrecision.

For details on these fixed-point parameters refer to Parameters for Fixed-Point
Components (ptolemy) in the ADS Ptolemy Simulation (ptolemy) documentation.

3. If UseArrivingPrecision = YES, then components that send a NULL particle on their

first firing should not be connected at the input of this component. For example,
483



Advanced Design System 2011.01 - Numeric Components
when a Delay component is connected at its input, such a NULL particle has a
precision of 1.0 and the output value will be forced to 0.

4. For general information regarding numeric matrix component signals, refer to
Numeric Matrix Components (numeric).



Advanced Design System 2011.01 - Numeric Components

GainInt_M

Description: Integer Gain Matrix
Library: Numeric, Matrix

Class: SDFGainInt_M

Derived From: MatrixBase

Parameters

Name Description Default Type Range
Gain |gain to be multiplied with each input matrix entry |1 int |(-o0, o)
Pin Inputs

Pin [Name |Description Signal Type
1 |input int matrix
Pin Outputs

Pin [Name Description [Signal Type
2 |output int matrix

Notes/Equations

1. GainInt_M multiplies an integer matrix by a scalar integer given by the Gain
parameter.

2. For general information regarding numeric matrix component signals, refer to
Numeric Matrix Components (numeric).

485



Advanced Design System 2011.01 - Numeric Components

Description: Gain Matrix
Library: Numeric, Matrix
Class: SDFGain_M
Derived From: MatrixBase

Parameters

Name Description Default Type Range

Gain |gain to be multiplied with each entry of the input 1.0 real |(-o0, o)
matrix

Pin Inputs

Pin /Name Description Signal Type
1 |input real matrix
Pin Outputs

Pin Name Description |Signal Type
2 |output real matrix

Notes/Equations

1. Gain_M multiplies a floating-point (real) matrix by a scalar gain value given by the
Gain parameter.

2. For general information regarding numeric matrix component signals, refer to
Numeric Matrix Components (numeric).

486



Advanced Design System 2011.01 - Numeric Components

Hermitian_M

Description: Hermitian Matrix
Library: Numeric, Matrix
Class: SDFHermitian_M
Derived From: MatrixBase

Pin Inputs

Pin [Name Description Signal Type
1 |input complex matrix
Pin Outputs

Pin [Name Description [Signal Type
2  |output complex matrix

Notes/Equations

1. Hermitian_M performs a Hermitian transpose (conjugate transpose) on the input
matrix.

2. For general information regarding numeric matrix component signals, refer to
Numeric Matrix Components (numeric).

487



Advanced Design System 2011.01 - Numeric Components

InverseCx_M

Description: Complex Inverse Matrix
Library: Numeric, Matrix

Class: SDFInverseCx_M

Derived From: MatrixBase

Pin Inputs

Pin [Name Description Signal Type

1 |input complex matrix
Pin Outputs

Pin [Name Description [Signal Type
2  |output complex matrix

Notes/Equations

1. The complex output matrix is the inverse of the complex input matrix.

[.input] X [ﬂlttpl.it}: [IdentityMatrix]
2. The input matrix must be square.

3. For information regarding numeric matrix component signals, refer to Numeric Matrix
Components (numeric).

488



Advanced Design System 2011.01 - Numeric Components

InverseFix_M

Description: Fixed-Point Inverse Matrix
Library: Numeric, Matrix

Class: SDFInverseFix_M

Derived From: SDFFix

Parameters

Name Description Default Type

OverflowHandler output overflow characteristic: wrapped, saturate, zero_saturate, |wrapped |enum
warning

ReportOverflow simulation overflow error report option: DONT_REPORT, REPORT REPORT |enum

RoundFix fixed-point computations, assignments, and data type conversions |[TRUNCATE enum
option: TRUNCATE, ROUND

UseArrivingPrecision |use precision of arriving matrices: NO, YES NO enum

InputPrecision precision of input matrix elements, in bits (used only if 2.14 precision
UseArrivingPrecision is set to NO)

OutputPrecision precision of output in bits and accumulation 2.14 precision

Pin Inputs

Pin [Name |Description Signal Type
1 |input fix matrix
Pin Outputs

Pin |[Name Description [Signal Type
2 |output fix matrix

Notes/Equations

1. The fixed-point output matrix is the inverse of the fixed-point input matrix.
[.input} X [ﬂlttpl.it]: [IdentityMatrix]

2. The input matrix must be square.

3. If the fixed-point operations cannot fit into the precision specified, overflow occurs
with the overflow characteristic specified by OverflowHandler. If ReportOverflow =
REPORT, after the simulation has finished the number of overflow errors (if any) will
be reported. RoundFix identifies whether fixed-point computations are truncate or
round method. If UseArrivingPrecision = NO, the input is cast to the precision
specified by InputPrecision.

For details on these fixed-point parameters refer to Parameters for Fixed-Point
Components (ptolemy) in the ADS Ptolemy Simulation (ptolemy) documentation.
4. If UseArrivingPrecision = YES, then components that send a NULL particle on their

489



Advanced Design System 2011.01 - Numeric Components
first firing should not be connected at the input of this component. For example,
when a Delay component is connected at its input, such a NULL particle has a
precision of 1.0 and the output value will be forced to 0.

. For general information regarding numeric matrix component signals, refer to
Numeric Matrix Components (numeric).

490



Advanced Design System 2011.01 - Numeric Components

Inverselnt_M

Description: Integer Inverse Matrix
Library: Numeric, Matrix

Class: SDFInverselnt_M

Derived From: MatrixBase

Pin Inputs

Pin [Name Description Signal Type

1 |input int matrix
Pin Inputs

Pin [Name Description [Signal Type
2 |output int matrix

Notes/Equations
1. The integer output matrix is the inverse of the input matrix. (Due to integer
arithmetic limitations, the output may not be the exact inverse of the input.)
[.input} X [ﬂlttpl.it] = [IdentityMatrix}
2. The input matrix must be square.

3. For general information regarding numeric matrix component signals, refer to
Numeric Matrix Components (numeric).

491



Advanced Design System 2011.01 - Numeric Components

Inverse_M

Ly [

Description: Inverse Matrix
Library: Numeric, Matrix
Class: SDFInverse_M
Derived From: MatrixBase

Pin Inputs

Pin [Name Description Signal Type

1 |input real matrix
Pin Outputs

Pin [Name Description [Signal Type
2 |output real matrix

Notes/Equations

1. The output matrix is the inverse of the input matrix.

[.input] X [ﬂlttpl.it}: [IdentityMatrix]
2. The input matrix must be square.

3. For general information regarding numeric matrix component signals, refer to
Numeric Matrix Components (numeric).

492



Advanced Design System 2011.01 - Numeric Components

Kalman_M
]
Fa 6
o< LA
—

Description: Kalman Filter Matrix

Library: Numeric, Matrix

Class: SDFKalman_M

Derived From: MatrixBase

C++ Code: See doc/sp_items/SDFKalman_M.html under your installation directory.

Parameters
Name Description Default Type |Range
StateDimension number of elements in state vector 5 int [1, )
InputDimension number of elements in observation 1 int [1, o)

vector
InitialState initial value of state vector 0.0 [5] real

array

InitialCorrMatrix initial value of correlation matrix of .10[5].10([5].10 real

error [5]1.10([5].1 array
InitialStateTransitionMatrix  |state transition matrix at time 0. 10[5]10[5]10([5] |[real

PHI(1,0) 10[5]1 array
InitialProcessNoiseCorrMatrix correlation matrix of process noise 0.0 [25] real

vector at time 0. Q(0) array
Pin Inputs
Pin Name Description Signal Type
1 |input real matrix
2 |StateTransitionMatrixAtTimeN real matrix
3 MeasurementMatrixAtTimeN real matrix
4  |ProcessNoiseCorrMatrixAtTimeN real matrix
5 |MeasurementNoiseCorrMatrixAtTimeN real matrix
Pin Outputs

Pin [Name Description [Signal Type
6 |output real matrix

Notes/Equations

1. Kalman_M implements a Kalman filter using the one-step prediction algorithm. The
initial values for the state transition, correlation, process noise correlation matrices,
and state vector are given as parameters.

2. Inputs are the current values of the state transition, process noise correlation,
measurement noise correlation, and measurement matrices, and the observation

vector.
493



Advanced Design System 2011.01 - Numeric Components
The single output is the state vector.
For details on using arrays of data for parameter values, refer to Understanding
Parameters (ptolemy) in the ADS Ptolemy Simulation (ptolemy) documentation.

5. For general information regarding numeric matrix component signals, refer to
Numeric Matrix Components (numeric).

AW

References
1. R.E. Kalman, "A new approach to linear filtering and prediction problems," Trans.

ASME, J. Basic Eng., Ser 82D, pp. 35-45, March 1960.
2. S. Haykin, Adaptive Filter Theory, Prentice-Hall, Inc., Englewood Cliffs, N.J., 1986.

494



Advanced Design System 2011.01 - Numeric Components

Description: Complex Matrix Multiplier
Library: Numeric, Matrix

Class: SDFMpyCx_M

Derived From: MatrixBase

Parameters

Name Description Default Type Range
NumRows number of rows in initial matrix 2 int [1, o)
NumCols |number of columns in initial matrix |2 int  |[1, )
Pin Inputs

Pin [Name |Description Signal Type

1 |Ainput complex matrix
2 |Binput complex matrix
Pin Outputs

Pin [Name Description [Signal Type
3  |output complex matrix

Notes/Equations

1. MpyCx_M multiplies the complex input matrices and outputs the resulting matrix.
2. The output matrix will have same number of rows as the Ainput and the same
number of columns as the Binput.

[autput] = [Ainput] A [Binput]
3. The number of columns in the Ainput matrix must match the number of rows in the
Binput matrix.

4. For general information regarding numeric matrix component signals, refer to
Numeric Matrix Components (numeric).

495



Advanced Design System 2011.01 - Numeric Components

Description: Fixed-Point Matrix Multiplier
Library: Numeric, Matrix

Class: SDFMpyFix_M

Derived From: SDFFix

Parameters

Name Description Default Type

OverflowHandler output overflow characteristic: wrapped, saturate, zero_saturate, |wrapped |enum
warning

ReportOverflow simulation overflow error report option: DONT_REPORT, REPORT REPORT |enum

RoundFix fixed-point computations, assignments, and data type conversions |[TRUNCATE enum
option: TRUNCATE, ROUND

UseArrivingPrecision |use precision of arriving matrices: NO, YES NO enum

InputPrecision precision of input matrix elements, in bits (used only if 2.14 precision
UseArrivingPrecision is set to NO)

OutputPrecision precision of output in bits and accumulation 2.14 precision

Pin Inputs

Pin [Name |Description Signal Type

1 |Ainput fix matrix
2 |Binput fix matrix
Pin Outputs

Pin [Name Description [Signal Type
3  |output fix matrix

Notes/Equations

1. MpyFix_M multiplies the input matrices and outputs the resulting fixed-point matrix.
If the result of the multiplication for any entry in the matrix cannot be fit into the
precision of the output, overflow occurs and is handled by OverflowHandler.

2. The output matrix will have same number of rows as the Ainput and the same
number of columns as the Binput.

[autput] = [Ainput] X [Binput]

3. The number of columns in the Ainput matrix must match the number of rows in the
Binput matrix.

4, If the fixed-point operations cannot fit into the precision specified, overflow occurs
with the overflow characteristic specified by OverflowHandler. If ReportOverflow =
REPORT, after the simulation has finished the number of overflow errors (if any) will

496



Advanced Design System 2011.01 - Numeric Components
be reported. RoundFix identifies whether fixed-point computations are truncate or
round method. If UseArrivingPrecision = NO, the input is cast to the precision
specified by InputPrecision.
For details on these fixed-point parameters refer to Parameters for Fixed-Point
Components (ptolemy)in the ADS Ptolemy Simulation (ptolemy) documentation.
. If UseArrivingPrecision = YES, then components that send a NULL particle on their
first firing should not be connected at the input of this component. For example,
when a Delay component is connected at its input, such a NULL particle has a
precision of 1.0 and the output value will be forced to 0.
. For general information regarding numeric matrix component signals, refer to
Numeric Matrix Components (numeric).

497



Advanced Design System 2011.01 - Numeric Components

Description: Integer Matrix Multiplier
Library: Numeric, Matrix

Class: SDFMpyInt_M

Derived From: MatrixBase

Pin Inputs

Pin [Name Description Signal Type

1 |Ainput int matrix
2 |Binput int matrix
Pin Outputs

Pin [Name Description [Signal Type
3  |output int matrix

Notes/Equations

1. MpylInt_M multiplies the input matrices and outputs the resulting matrix.
2. The output matrix will have same number of rows as the Ainput and the same
number of columns as the Binput.

[autput] = [Ainput] A [Binput]

3. The number of columns in the Ainput matrix must match the number of rows in the
Binput matrix.

4, For general information regarding numeric matrix component signals, refer to
Numeric Matrix Components (numeric).

498



Advanced Design System 2011.01 - Numeric Components

Description: Matrix Multiplier
Library: Numeric, Matrix
Class: SDFMpy_M

Derived From: MatrixBase

Pin Inputs

Pin [Name Description Signal Type

1 |Ainput real matrix
2 |Binput real matrix
Pin Outputs

Pin [Name Description [Signal Type
3  |output real matrix

Notes/Equations

1. Mpy_M multiplies the input matrices and outputs the resulting matrix.
2. The output matrix will have same number of rows as the Ainput and the same
number of columns as the Binput.

[autput] = [Ainput] A [Binput]

3. The number of columns in the Ainput matrix must match the number of rows in the
Binput matrix.

4, For general information regarding numeric matrix component signals, refer to
Numeric Matrix Components (numeric).

499



Advanced Design System 2011.01 - Numeric Components

MpyScalarCx_M

2 |
1_.

x

[

Description: Matrix and Complex Scalar Multiplier
Library: Numeric, Matrix

Class: SDFMpyScalarCx_M

Derived From: MatrixBase

Pin Inputs

Pin [Name |Description Signal Type

1 |input complex matrix
2 |gain |Input gain to be multiplied with the input matrix |complex

Pin Outputs

Pin [Name Description [Signal Type
3  |output complex matrix

Notes/Equations
1. MpyScalarCx_M multiplies a complex matrix by a scalar complex input value.

2. For general information regarding numeric matrix component signals, refer to
Numeric Matrix Components (numeric).

500



Advanced Design System 2011.01 - Numeric Components

MpyScalarFix_M

2 ol
1 r S35 o0 o[

B

Description: Scalar and Fixed-Point Matrix Multiplier
Library: Numeric, Matrix

Class: SDFMpyScalarFix_M

Derived From: SDFFix

Parameters

Name Description Default Type

OverflowHandler output overflow characteristic: wrapped, saturate, zero_saturate, |wrapped |enum
warning

ReportOverflow simulation overflow error report option: DONT_REPORT, REPORT REPORT |enum

RoundFix fixed-point computations, assignments, and data type conversions |[TRUNCATE enum
option: TRUNCATE, ROUND

UseArrivingPrecision |use precision of arriving matrices: NO, YES NO enum

InputPrecision precision of input matrix elements, in bits (used only if 2.14 precision
UseArrivingPrecision is set to NO)

OutputPrecision precision of output in bits and accumulation 2.14 precision

Pin Inputs

Pin |[Name |Description Signal Type

1 |input fix matrix

2 |gain |Input gain to be multiplied with the input matrix [fix
Pin Outputs

Pin [Name Description [Signal Type
3  |output fix matrix

Notes/Equations

1. MpyScalarFix_M multiplies a fixed-point matrix by a scalar fixed-point input value.
2. If the fixed-point operations cannot fit into the precision specified, overflow occurs
with the overflow characteristic specified by OverflowHandler. If ReportOverflow =
REPORT, after the simulation has finished the number of overflow errors (if any) will
be reported. RoundFix identifies whether fixed-point computations are truncate or
round method. If UseArrivingPrecision = NO, the input is cast to the precision
specified by InputPrecision.
For details on these fixed-point parameters refer to Parameters for Fixed-Point
Components (ptolemy) in the ADS Ptolemy Simulation (ptolemy) documentation.
3. If UseArrivingPrecision = YES, then components that send a NULL particle on their
first firing should not be connected at the input of this component. For example,
when a Delay component is connected at its input, such a NULL particle has a
501



Advanced Design System 2011.01 - Numeric Components
precision of 1.0 and the output value will be forced to 0.
4. For general information regarding numeric matrix component signals, refer to
Numeric Matrix Components (numeric).

502



Advanced Design System 2011.01 - Numeric Components

MpyScalarInt_M

[

=%
L]
L L]
FLL]

Description: Scalar and Integer Matrix Multiplier
Library: Numeric, Matrix

Class: SDFMpyScalarint_M

Derived From: MatrixBase

Pin Inputs

Pin [Name |Description Signal Type
1 |input int matrix

2 |gain |Input gain to be multiplied with the input matrix |int

Pin Outputs

Pin [Name Description [Signal Type
3  |output int matrix

Notes/Equations
1. MpyScalarCx_M multiplies an integer matrix by a scalar integer input value.

2. For general information regarding numeric matrix component signals, refer to
Numeric Matrix Components (numeric).

503



Advanced Design System 2011.01 - Numeric Components

MpyScalar_M

2_’.___

1y —>

x

L

Description: Scalar and Matrix Multiplier
Library: Numeric, Matrix

Class: SDFMpyScalar_M

Derived From: MatrixBase

Pin Inputs

Pin [Name |Description Signal Type
1 |input real matrix
2 |gain |Input gain to be multiplied with the input matrix |real

Pin Outputs

Pin [Name Description [Signal Type
3  |output real matrix

Notes/Equations
1. MpyScalar_M multiplies a floating-point (real) matrix by a scalar input value.

2. For general information regarding numeric matrix component signals, refer to
Numeric Matrix Components (numeric).

504



Advanced Design System 2011.01 - Numeric Components

MxCom_M

Description: Composed Matrix
Library: Numeric, Matrix
Class: SDFMxCom_M

Derived From: MatrixBase

Parameters

Name Description Default Type Range

OutputNumRows number of rows for output matrix 100 int  |[InputNumRows, o)t

OutputNumColumns |number of columns for output 100 int [InputNumColumns,
matrix o)t T

InputNumRows number of rows for input matrix 4 int [1, )

InputNumColumns |number of columns for input matrix |4 int  |[1, )

T must be an integer multiple of InputNumRows
t1 must be an integer multiple of InputNumColumns

Pin Inputs

Pin [Name |Description Signal Type
1 |input real matrix
Pin Outputs

Pin Name Description |Signal Type
2 |output real matrix

Notes/Equations

1. Each output matrix is composed from the input submatrices. The output matrix is
filled with input submatrices in rasterized order; that is, the top of the output matrix
is filled first, from left to right, with the first input matrices.

2. For general information regarding numeric matrix component signals, refer to

Numeric Matrix Components (numeric).

505



Advanced Design System 2011.01 - Numeric Components

MxDecom_M

Description: Decomposed Matrix
Library: Numeric, Matrix

Class: SDFMxDecom_M

Derived From: MatrixBase

Parameters

Name Description Default Type Range

StartRow starting row in input matrix to generate output matrices |1 int [1, o)
(first row is 1)

StartCol starting column in input matrix to generate output 1 int [1, o0)
matrices (first column is 1; therefore, the upper left
corner of the matrix is (1,1)

InputNumRows number of rows for input matrix 100 int [OutputNumRows,

o)t

InputNumCols number of columns from input matrix to use to 100 int [OutputNumCaols,
generate the output matrices. o) Tt

OutputNumRows [number of rows for output matrix 4 int [1, )

OutputNumCols |number of columns for output matrix 4 int [1, o)

T must be an integer multiple of OutputNumRows

t1 must be an integer multiple of OutputNumCols

Pin Inputs

Pin [Name |Description Signal Type

1 |input Input matrix to be decomposed into the output real matrix

submatrices.

Pin Outputs

Pin Name Description Signal Type

2 |output |Output matrices with dimensions real matrix

OutputNumRows*OQutputNumCols.

Notes/Equations

1. All or part of the input matrix is decomposed into a sequence of output submatrices.
The part of input matrix to be decomposed is specified by StartRow, StartCol,
InputNumRows, and InputNumColumns. The dimensions of each output submatrix
are specified by the OutputNumRows and OutputNumColumns.

506



Advanced Design System 2011.01 - Numeric Components

. For each input matrix, the number of output matrices is:

InputNumRows « InputNumColumns

OutputNumBRows OutputNumCelumns

. For general information regarding numeric matrix component signals, refer to
Numeric Matrix Components (numeric).

507



Advanced Design System 2011.01 - Numeric Components

PackCx_M

1 :“J'_EE_ »2

Description: Pack Complex Matrix
Library: Numeric, Matrix

Class: SDFPackCx_M

Derived From: MatrixBase

Parameters

Name Description Default Type Range
NumRows number of rows in output matrix 2 int [1, )
NumcCols |number of columns in output matrix |2 int  |[1, o)
Pin Inputs

Pin [Name |Description Signal Type
1 |input complex
Pin Outputs

Pin [Name Description [Signal Type
2 |output complex matrix

Notes/Equations

1. PackCx_M constructs a complex output matrix from scalar input values. Inputs are
entered into the matrix in rasterized order; for example, for an MxN matrix, the first
row is filled from left to right using the first N input values.

2. For general information regarding numeric matrix component signals, refer to
Numeric Matrix Components (numeric).

508



Advanced Design System 2011.01 - Numeric Components

PackFix_M

_..,2

L l_ﬁ

Description: Pack Fixed-Point Matrix
Library: Numeric, Matrix

Class: SDFPackFix_M

Derived From: MatrixBase

Parameters

Name Description Default Type Range
NumRows number of rows in output matrix 2 int [1, )
NumcCols |number of columns in output matrix |2 int  |[1, o)
Pin Inputs

Pin [Name |Description Signal Type
1 |input fix
Pin Outputs

Pin [Name Description [Signal Type
2 |output fix matrix

Notes/Equations

1. PackFix_M constructs a fixed-point output matrix from scalar input values. Inputs are
entered into the matrix in rasterized order; for example, for an MxN matrix, the first
row is filled from left to right using the first N input values.

2. There are no fixed-point parameters for this component because fixed-point
arithmetic is not performed.

3. For general information regarding numeric matrix component signals, refer to
Numeric Matrix Components (numeric).

509



Advanced Design System 2011.01 - Numeric Components

PackInt_M

* phllf

Description: Pack Integer Matrix
Library: Numeric, Matrix

Class: SDFPackInt_M

Derived From: MatrixBase

Parameters

Name Description Default Type Range
NumRows number of rows in output matrix 2 int [1, )
NumcCols |number of columns in output matrix |2 int  |[1, o)
Pin Inputs

Pin [Name |Description Signal Type
1 J|input int
Pin Outputs

Pin [Name Description [Signal Type
2 |output int matrix

Notes/Equations

1. PackInt_M constructs an integer output matrix from scalar input values. Inputs are
entered into the matrix in rasterized order; for example, for an MxN matrix, the first
row is filled from left to right using the first N input values.

2. For general information regarding numeric matrix component signals, refer to
Numeric Matrix Components (numeric).

510



Advanced Design System 2011.01 - Numeric Components

Pack_M

1-'.-- lﬁ —'-2

Description: Pack Matrix
Library: Numeric, Matrix
Class: SDFPack_M
Derived From: MatrixBase

Parameters

Name Description Default Type Range
NumRows number of rows in output matrix 2 int [1, )
NumcCols |number of columns in output matrix |2 int  |[1, o)
Pin Inputs

Pin [Name |Description Signal Type
1 |input real
Pin Outputs

Pin [Name Description [Signal Type
2 |output real matrix

Notes/Equations

1. Pack_M constructs a complex output matrix from scalar input values. Inputs are
entered into the matrix in rasterized order; for example, for an MxN matrix, the first
row is filled from left to right using the first N input values.

2. For general information regarding numeric matrix component signals, refer to
Numeric Matrix Components (numeric).

511



Advanced Design System 2011.01 - Numeric Components

SampleMean_M

L [ 7

Description: Mean Value Matrix
Library: Numeric, Matrix

Class: SDFSampleMean_M
Derived From: MatrixBase

Pin Inputs

Pin [Name Description Signal Type

1 |input real matrix
Pin Outputs

Pin [Name Description [Signal Type
2 |output real

Notes/Equations
1. SampleMean_M finds the average value of the elements of the input matrix.

2. For general information regarding numeric matrix component signals, refer to
Numeric Matrix Components (numeric).

512



Advanced Design System 2011.01 - Numeric Components

SubCx_M

Description: Complex Subtraction
Library: Numeric, Matrix

Class: SDFSubCx_M

Derived From: MatrixBase

Pin Inputs

Pin [Name Description Signal Type

1 |pos complex matrix
2 |neg multiple complex matrix
Pin Outputs

Pin [Name Description [Signal Type
3  |output complex matrix

Notes/Equations

1. SubCx_M outputs the pos input matrix minus all of the neg inputs.

2. All input matrices must be of the same dimensions.

3. For general information regarding numeric matrix component signals, refer to
Numeric Matrix Components (numeric).

513



Advanced Design System 2011.01 - Numeric Components

SubFix_M

Description: Fixed Subtraction
Library: Numeric, Matrix
Class: SDFSubFix_M

Derived From: SDFFix

h5 Parameters

Name Description Default |Type

OverflowHandler output overflow characteristic: wrapped, saturate, zero_saturate, |wrapped |enum
warning

ReportOverflow simulation overflow error report option: DONT_REPORT, REPORT REPORT |enum

RoundFix fixed-point computations, assignments, and data type conversions |[TRUNCATE enum
option: TRUNCATE, ROUND

UseArrivingPrecision |use precision of arriving matrices: NO, YES NO enum

InputPrecision precision of input matrix elements, in bits (used only if 2.14 precision
UseArrivingPrecision is set to NO)

OutputPrecision precision of output in bits and accumulation 2.14 precision

Pin Inputs

Pin [Name Description Signal Type

1 |pos fix matrix

2 |neg multiple fix
matrix

Pin Outputs

Pin /Name Description |Signal Type
3 |output fix matrix

Notes/Equations

1. SubFix_M outputs the pos input matrix minus the neg inputs.

2. If the fixed-point operations cannot fit into the precision specified, overflow occurs
with the overflow characteristic specified by OverflowHandler. If ReportOverflow =
REPORT, after the simulation has finished the number of overflow errors (if any) will
be reported. RoundFix identifies whether fixed-point computations are truncate or
round method. If UseArrivingPrecision = NO, the input is cast to the precision
specified by InputPrecision.

For details on these fixed-point parameters refer to Parameters for Fixed-Point
Components (ptolemy) in the ADS Ptolemy Simulation (ptolemy) documentation.
3. All input matrices must be of the same dimensions.

514



Advanced Design System 2011.01 - Numeric Components
4. If UseArrivingPrecision = YES, then components that send a NULL particle on their
first firing should not be connected at the input of this component. For example,
when a Delay component is connected at its input, such a NULL particle has a
precision of 1.0 and the output value will be forced to 0.
5. For general information regarding numeric matrix component signals, refer to
Numeric Matrix Components (numeric).

515



Advanced Design System 2011.01 - Numeric Components

SubInt_M

Description: Integer Subtraction
Library: Numeric, Matrix

Class: SDFSubInt_M

Derived From: MatrixBase

Pin Inputs

Pin [Name Description Signal Type

1 |pos int matrix

2 |neg multiple int
matrix

Pin Outputs

Pin Name Description |Signal Type
3  |output int matrix

Notes/Equations

1. Sublnt_M outputs the pos input matrix minus all of the neg inputs.

2. All input matrices must be of the same dimensions.

3. For general information regarding numeric matrix component signals, refer to
Numeric Matrix Components (numeric).

516



Advanced Design System 2011.01 - Numeric Components

Description: Subtraction
Library: Numeric, Matrix
Class: SDFSub_M

Derived From: MatrixBase

Pin Inputs

Pin [Name Description Signal Type

1 |pos real matrix

2 |neg multiple real
matrix

Pin Outputs

Pin Name Description |Signal Type
3  |output real matrix

Notes/Equations

1. Sub_M outputs the pos input matrix minus all neg inputs.

2. All input matrices must be of the same dimensions.

3. For general information regarding numeric matrix component signals, refer to
Numeric Matrix Components (numeric).

517



Advanced Design System 2011.01 - Numeric Components

SubMxCx_M

T
LLL

Description: Complex Submatrix
Library: Numeric, Matrix

Class: SDFSubMxCx_M

Derived From: MatrixBase

Parameters
Name Description Default Type Range
StartRow |starting row in the submatrix within the input matrix. The first (top) row in |1 int [1, o)
a matrix is 1.
StartCol |starting column in the submatrix within the input matrix. The first (left) 1 int  |[1, o)
column in a matrix is 1; therefore, the upper left corner of the matrix is
(1,1).
NumRows number of rows for submatrix 1 int [1, o)
NumCols |number of columns for submatrix 1 int [1, o)
Pin Inputs

Pin Name Description Signal Type
1 |input complex matrix
Pin Outputs

Pin Name Description |Signal Type
2 |output complex matrix

Notes/Equations

1. Output matrix is a submatrix of the input matrix. The parameters specify the size and
position of the output submatrix from within the input matrix.

2. For general information regarding numeric matrix component signals, refer to
Numeric Matrix Components (numeric).

518



Advanced Design System 2011.01 - Numeric Components

SubMxFix_M

Description: Fixed Submatrix
Library: Numeric, Matrix
Class: SDFSubMxFix_M
Derived From: MatrixBase

Parameters
Name Description Default Type Range
StartRow |starting row in the submatrix within the input matrix. The first (top) row in |1 int [1, o)
a matrix is 1.
StartCol |starting column in the submatrix within the input matrix. The first (left) 1 int  |[1, o)
column in a matrix is 1; therefore, the upper left corner of the matrix is
(1,1).
NumRows number of rows for submatrix 2 int [1, o)
NumCols |number of columns for submatrix 1 int [1, o)
Pin Inputs

Pin Name Description Signal Type
1 |input fix matrix
Pin Outputs

Pin Name Description |Signal Type
2 |output fix matrix

Notes/Equations

1. Output matrix is a submatrix of the input matrix. The parameters specify the size and
position of the output submatrix from within the input matrix.

2. There are no fixed-point parameters because fixed-point arithmetic is not performed.
The output precision is the same as the input precision.

3. For general information regarding numeric matrix component signals, refer to
Numeric Matrix Components (numeric).

519



Advanced Design System 2011.01 - Numeric Components

SubMxInt_M
1 EﬁL 2

Description: Integer Submatrix
Library: Numeric, Matrix
Class: SDFSubMxInt_M
Derived From: MatrixBase

Parameters
Name Description Default Type Range
StartRow |starting row in the submatrix within the input matrix. The first (top) row in |1 int [1, o)
a matrix is 1.
StartCol |starting column in the submatrix within the input matrix. The first (left) 1 int  |[1, o)
column in a matrix is 1; therefore, the upper left corner of the matrix is
(1,1).
NumRows number of rows for submatrix 1 int [1, o)
NumCols |number of columns for submatrix 1 int [1, o)
Pin Inputs

Pin Name Description Signal Type
1 |input int matrix
Pin Outputs

Pin Name Description |Signal Type
2 |output int matrix

Notes/Equations

1. The output matrix is a submatrix of the input matrix. The parameters specify the size
and position of the output submatrix from within the input matrix.

2. For general information regarding numeric matrix component signals, refer to
Numeric Matrix Components (numeric).

520



Advanced Design System 2011.01 - Numeric Components

SubMx_M

Description: Submatrix
Library: Numeric, Matrix
Class: SDFSubMx_M
Derived From: MatrixBase

Parameters
Name Description Default Type Range
StartRow |starting row in the submatrix within the input matrix. The first (top) row in |1 int [1, o)
a matrix is 1.
StartCol |starting column in the submatrix within the input matrix. The first (left) 1 int  |[1, o)
column in a matrix is 1; therefore, the upper left corner of the matrix is
(1,1).
NumRows number of rows for submatrix 2 int [1, o)
NumCols |number of columns for submatrix 2 int [1, o)
Pin Inputs

Pin Name Description Signal Type
1 |input real matrix
Pin Outputs

Pin Name Description |Signal Type
2 |output real matrix

Notes/Equations

1. Output matrix is a submatrix of the input matrix. The parameters specify the size and
position of the output submatrix from within the input matrix.

2. For general information regarding numeric matrix component signals, refer to
Numeric Matrix Components (numeric).

521



Advanced Design System 2011.01 - Numeric Components

SVD_M
4
j <

Description: Singular Value Decomposition of a Toeplitz Matrix
Library: Numeric, Matrix

Class: SDFSVD_M

Derived From: MatrixBase

C++ Code: See doc/sp_items/SDFSVD_M.html under your installation directory.

Parameters

Name Description Default

Threshold threshold for similarities; algorithm assumes values 0.00000000000000001
below Threshold have reached zero

MaxIterations maximum iterations for SVD convergence 30
GeneratelLeft |matrix generation of left singular vectors: Do not Generate Left Singular
Generate Left Singular Vectors, Generate Left Vectors

Singular Vectors

GenerateRight \/matrix generation of right singular vectors: Do not |Generate Right Singular
Generate Right Singular Vectors, Generate Right Vectors
Singular Vectors

Pin Inputs

Pin [Name |Description [Signal Type
1 |input |Input stream. real matrix

Pin Outputs

Pin [Name |Description Signal Type
2 |svals |The singular values of input - The diagonal of "W". [real matrix

3 |rsvec |Right singular vectors of input - "V". real matrix
4 |Isvec |Left singular vectors of input - "W". real matrix

Notes/Equations

Type
real

int
enum

enum

Range

_w,

[1, )

1. SVD_M computes the singular-value decomposition (SVD) of an input Toeplitz matrix A
by decomposing A into A = UWV’, where U and V are orthogonal matrices and V’

represents the transpose of V.

2. The input matrix must be a Toeplitz matrix. The output S is the diagonal of the

matrix W, the output L is the matrix U, and the output R is the matrix V. If the input
matrix is of size M rows by N columns, the output S will be of size N x 1, output L will

be of size M x N, and output R will be of size N x N.

3. The MaxlIterations parameter allows the designer to control the number of iterations
that the SVD algorithm will be allowed to run before stopping. Normally, the SVD
algorithm will converge before this number of iterations is reached but this parameter

522



Advanced Design System 2011.01 - Numeric Components
is provided to prevent non-convergent matrices from causing the component to run
too long.
. The execution time of SVD_M may be reduced by using the GeneratelLeft and
GenerateRight parameters to specify that the matrices of the left and right singular
vectors not be generated. The vector of singular values (the S output) is always
generated.
. S. Haykin, Modern Filters, pp. 333-335, Macmillan Publishing Company, New York,
1989.
. See Also: Toeplitz_M (numeric)
. For general information regarding numeric matrix component signals, refer to
Numeric Matrix Components (numeric).

523



Advanced Design System 2011.01 - Numeric Components

TableCx_M
1 E 2

Description: Complex Lookup Table Matrix
Library: Numeric, Matrix

Class: SDFTableCx_M

Derived From: MatrixBase

Parameters

Name Description Default Type Range
NumRows number of rows for each matrix in the table 1 int [1, o)
NumcCols number of columns for each matrix in the table 1 int [1, o)
ComplexTable [table containing matrices. Each matrix with dimensions |1.0+j 1.0-j (- complex |t

NumRows x NumCols is given in row major ordering. 1.0+j) (-1.0-j) |array

T ComplexTable humber of elements must be an integer multiple of the output matrix size
(NumRows <B> NumCols)

Pin Inputs

Pin |[Name |Description Signal Type

1 |input |the index for table lookup. The first matrix is index "0" |int

Pin Outputs

Pin [Name Description Signal Type

2 |output |the matrix in the table corresponding to the complex matrix
index.

Notes/Equations

1. TableCx_M implements a matrix lookup table indexed by an integer-valued input. The
output will be a the matrix corresponding to the index input. The input must be from
0 to N — 1, inclusive, where N is the number of matrices in the table. ComplexTable
specifies the entries of matrices in the table.
Entries of each matrix in the table should be given in row major ordering. Therefore,
the upper left corner entry of the first matrix is the first value in the table, and the
first NumCols items in the table parameter make up the first row of the first matrix in
the table.
An error occurs if the index input value is out of bounds.

2. For details on complex parameter values, refer to Complex-Valued Parameters
(ptolemy) in the ADS Ptolemy Simulation (ptolemy) documentation.
For details on using complex arrays of data, refer to Value Types (ptolemy) in the the

524



Advanced Design System 2011.01 - Numeric Components
ADS Ptolemy Simulation (ptolemy) documentation.
3. For general information regarding numeric matrix component signals, refer to
Numeric Matrix Components (numeric).

525



Advanced Design System 2011.01 - Numeric Components

TableInt_M
1 E 2

Description: Integer Lookup Table Matrix
Library: Numeric, Matrix

Class: SDFTableInt_M

Derived From: MatrixBase

Parameters

Name Description Default Type Range

NumRows [number of rows for each matrix in the table 1 int [1, o)

NumCols number of columns for each matrix in the table 2 int [1, o)

IntTable |table containing matrices. Each matrix with dimensions NumRows x |111-1-11 |int T
NumCols is given in row major ordering. -1-1 array

Tt IntTable number of elements must be an integer multiple of the output matrix size
(NumRows <B> NumCols)

Pin Inputs
Pin |[Name |Description Signal Type
1 |input |the index for table lookup. The first matrix is index "0" |int
Pin Outputs
Pin [Name Description Signal Type
2 |output |the matrix in the table corresponding to the int matrix
index.

Notes/Equations

1. TableInt_M implements a matrix lookup table indexed by an integer-valued input.
The output will be a the matrix corresponding to the index input. The input must be
from 0 to N — 1, inclusive, where N is the humber of matrices in the table. IntTable
specifies the entries of matrices in the table.

2. The entries of each matrix in the table should be given in row major ordering.

Therefore, the upper left corner entry of the first matrix is the first value in the table,

and the first NumCols items in the table parameter make up the first row of the first

matrix in the table.

An error occurs if the index input value is out of bounds.

For details on using arrays of data for parameter values, refer to Understanding

Parameters (ptolemy) in the ADS Ptolemy Simulation (ptolemy) documentation.

5. For general information regarding numeric matrix component signals, refer to

Al

526



Advanced Design System 2011.01 - Numeric Components
Numeric Matrix Components (numeric).

527



Advanced Design System 2011.01 - Numeric Components

Table_M
1 % 2

Description: Lookup Table Matrix
Library: Numeric, Matrix

Class: SDFTable_M

Derived From: MatrixBase

Parameters

Name Description Default Type |Range

NumRows |number of rows for each matrix in the table 2 int [1, o)

NumCols |number of columns for each matrix in the table 2 int [1, o)

FloatTable [table containing matrices. Each matrix with dimensions 0.0 0.00.00.0 1.0 |real T
NumRows x NumCols is given in row major ordering. 1.01.01.0 array

0

1

T FloatTable number of elements must be an integer multiple of the output matrix size
(NumRows <B> NumCols)

Pin Inputs

Pin |[Name |Description Signal Type

1 |input |the index for table lookup. The first matrix is index "0" |int

Pin Outputs

Pin [Name Description Signal Type

2 |output |the matrix in the table corresponding to the real matrix
index.

Notes/Equations

1. Table_M implements a matrix lookup table indexed by an integer-valued input. The
output will be the matrix corresponding to the index input. The input must be from 0
to N — 1, inclusive, where N is the number of matrices in the table. FloatTable
specifies the entries of matrices in the table.

2. Entries of each matrix in the table should be given in row major ordering. Therefore,

the upper left corner entry of the first matrix is the first value in the table, and the

first NumCols items in the table parameter make up the first row of the first matrix in
the table.

An error occurs if the index input value is out of bounds.

For details on these fixed-point parameters refer to Parameters for Fixed-Point

Components (ptolemy) in the ADS Ptolemy Simulation (ptolemy) documentation.

5. For general information regarding numeric matrix component signals, refer to

Al

528



Advanced Design System 2011.01 - Numeric Components
Numeric Matrix Components (numeric).

529



Advanced Design System 2011.01 - Numeric Components

ToeplitzCx_M

Description: Complex Toeplitz Matrix
Library: Numeric, Matrix

Class: SDFToeplitzCx_M

Derived From: MatrixBase

Parameters

Name Description Default Type Range
NumRows )number of rows in the output matrix 2 int [1, c0)
NumcCols |number of columns in the output matrix |2 int  |[1, o)
Pin Inputs

Pin [Name |Description [Signal Type
1 |input |Input stream. complex
Pin Outputs

Pin [Name Description Signal Type

2 |output |Data matrix |complex matrix
X.

Notes/Equations

1. ToeplitzCx_M builds a rectangular Toeplitz matrix from the input scalar values.

2. ToeplitzCx_M generates an output matrix X, with dimensions NumRows x NumCols,
from an input stream of NumRows + NumCols — 1 particles. The output matrix is a
Toeplitz matrix such that
the first row is

x(M-1) x(M-2) ... x(Dﬂ

the second row is

(M) x(M-1) x(M-2) ... x(1)]
nd so forth until the last row, which is
X(N-1) x(N=2) ... x(N-M)]

where NumRows = N — M + 1 and NumCols = M and conversely, M = NumCols and N
= NumRows + NumCols — 1.

3. For general information regarding numeric matrix component signals, refer to
Numeric Matrix Components (numeric).

Q)

530



Advanced Design System 2011.01 - Numeric Components

ToeplitzFix_M

il [FE—p?

Description: Fixed Toeplitz Matrix
Library: Numeric, Matrix

Class: SDFToeplitzFix_M

Derived From: SDFFix

Parameters
Name Description

OverflowHandler output overflow characteristic: wrapped, saturate,
zero_saturate, warning

ReportOverflow simulation overflow error report option: DONT_REPORT,
REPORT
RoundFix fixed-point computations, assignments, and data type

conversions option: TRUNCATE, ROUND
UseArrivingPrecision |use precision of arriving matrices: NO, YES

InputPrecision precision of input matrix elements, in bits (used only if
UseArrivingPrecision is set to NO)

OutputPrecision precision of output in bits and accumulation

NumRows number of rows in the output matrix

NumCols number of columns in the output matrix

Pin Inputs

Pin [Name |Description [Signal Type
1 |input |Input stream. fix
Pin Outputs

Pin [Name Description Signal Type

2 |output [the data matrix  [fix matrix
X.

Notes/Equations

Default
wrapped

REPORT

TRUNCATE

NO
2.14

2.14

Type Range
enum

enum

enum

enum
precision

precision
int [1, o)
int [1, c0)

1. ToeplitzFix_M builds a rectangular Toeplitz matrix from the input scalar values.
2. This component generates an output matrix X, with dimensions NumRows x
NumCols, from an input stream of NumRows + NumCols — 1 particles. The output

matrix is a Toeplitz matrix such that
the first row is

[x(M— 1) x(M-2) ... x(D]]
the second row is

531



Advanced Design System 2011.01 - Numeric Components
(M) x(M 1) x(M=2) ... x(1)]
and so forth until the last row, which is
X(N=1) x(N=2) ... x(N-M)|

where NumRows = N — M +1 and NumCols = M and conversely, M = NumCols and N
= NumRows + NumcCols — 1.

. If the fixed-point operations cannot fit into the precision specified, overflow occurs
with the overflow characteristic specified by OverflowHandler. If ReportOverflow =
REPORT, after the simulation has finished the number of overflow errors (if any) will
be reported. RoundFix identifies whether fixed-point computations are truncate or
round method. If UseArrivingPrecision = NO, the input is cast to the precision
specified by InputPrecision.

For details on these fixed-point parameters refer to Parameters for Fixed-Point
Components (ptolemy) in the ADS Ptolemy Simulation (ptolemy) documentation.

. If UseArrivingPrecision = YES, then components that send a NULL particle on their
first firing should not be connected at the input of this component. For example,
when a Delay component is connected at its input, such a NULL particle has a
precision of 1.0 and the output value will be forced to 0.

. For general information regarding numeric matrix component signals, refer to
Numeric Matrix Components (numeric).

532



Advanced Design System 2011.01 - Numeric Components

ToeplitzInt_M

Description: Integer Toeplitz Matrix
Library: Numeric, Matrix

Class: SDFToeplitzint_M

Derived From: MatrixBase

Parameters

Name Description Default Type Range
NumRows )number of rows in the output matrix 2 int [1, c0)
NumcCols |number of columns in the output matrix |2 int  |[1, o)
Pin Inputs

Pin [Name |Description [Signal Type
1 |input |Input stream. |int
Pin Outputs

Pin [Name Description Signal Type

2 |output [the data matrix int matrix
X.

Notes/Equations

1. ToeplitzInt_M builds a rectangular Toeplitz matrix from input scalar values.

2. This component generates an output matrix X, with dimensions NumRows x
NumCols, from an input stream of NumRows + NumCols — 1 particles. The output
matrix is a Toeplitz matrix such that
the first row is

x(M-1) x(M-2) ... x(Dﬂ

the second row is

(M) x(M-1) x(M-2) ... x(1)]
nd so forth until the last row, which is
X(N-1) x(N=2) ... x(N-M)]

where NumRows = N — M + 1 and NumCols = M and conversely M = NumCols and N
= NumRows + NumCols — 1.

3. For general information regarding numeric matrix component signals, refer to
Numeric Matrix Components (numeric).

Q)

533



Advanced Design System 2011.01 - Numeric Components

Toeplitz_M

Description: Toeplitz Matrix
Library: Numeric, Matrix
Class: SDFToeplitz_M
Derived From: MatrixBase

Parameters

Name Description Default Type Range
NumRows )number of rows in the output matrix 2 int [1, c0)
NumcCols |number of columns in the output matrix |2 int  |[1, o)
Pin Inputs

Pin [Name |Description [Signal Type
1 |input |Input stream. real
Pin Outputs

Pin [Name Description Signal Type

2 |output [the data matrix real matrix
X.

Notes/Equations

1. Toeplitz_M builds a rectangular Toeplitz matrix from the input scalar values.

2. This component generates an output matrix X, with dimensions NumRows
x NumCols, from an input stream of NumRows+NumCols— 1particles. The output
matrix is a Toeplitz matrix such that
the first row is

x(M-1) x(M-2) ... x(Dﬂ

the second row is

(M) x(M-1) x(M-2) ... x(1)]
nd so forth until the last row, which is
X(N-1) x(N=2) ... x(N-M)]

where NumRows = N — M +1 and NumCols = M and conversely M = NumCols and N
= NumRows + NumCols — 1.

3. For general information regarding numeric matrix component signals, refer to
Numeric Matrix Components (numeric).

Q)

534



Advanced Design System 2011.01 - Numeric Components

TransposeCx_M

Description: Complex Transpose Matrix
Library: Numeric, Matrix

Class: SDFTransposeCx_M

Derived From: MatrixBase

Pin Inputs

Pin [Name Description Signal Type

1 |input complex matrix
Pin Outputs

Pin [Name Description [Signal Type
2  |output complex matrix

Notes/Equations
1. TransposeCx_M outputs the transpose of the input matrix.

2. For general information regarding numeric matrix component signals, refer to
Numeric Matrix Components (numeric).

535



Advanced Design System 2011.01 - Numeric Components

TransposeFix_M

o [ 7

Description: Fixed Transpose Matrix
Library: Numeric, Matrix

Class: SDFTransposeFix_M

Derived From: MatrixBase

Pin Inputs

Pin [Name Description Signal Type

1 |input fix matrix
Pin Outputs

Pin [Name Description [Signal Type

2 |output fix matrix

Notes/Equations

1. TransposeFix_M outputs the transpose of the input matrix.

2. There are no fixed-point parameters for this component because fixed-point
arithmetic is not performed.

3. For general information regarding numeric matrix component signals, refer to
Numeric Matrix Components (numeric).

536



Advanced Design System 2011.01 - Numeric Components

Transposelnt_M

Description: Integer Transpose Matrix
Library: Numeric, Matrix

Class: SDFTransposelnt_M

Derived From: MatrixBase

Pin Inputs

Pin [Name Description Signal Type

1 |input int matrix
Pin Outputs

Pin [Name Description [Signal Type
2 |output int matrix

Notes/Equations
1. Transposelnt_M outputs the transpose of the input matrix.

2. For general information regarding numeric matrix component signals, refer to
Numeric Matrix Components (numeric).

537



Advanced Design System 2011.01 - Numeric Components

Transpose_M

L [ —»°

Description: Transpose Matrix
Library: Numeric, Matrix
Class: SDFTranspose_M
Derived From: MatrixBase

Pin Inputs

Pin [Name Description Signal Type

1 |input real matrix
Pin Outputs

Pin [Name Description [Signal Type
2 |output real matrix

Notes/Equations
1. Transpose_M outputs the transpose of the input matrix.

2. For general information regarding numeric matrix component signals, refer to
Numeric Matrix Components (numeric).

538



Advanced Design System 2011.01 - Numeric Components

UnPkCx_M

Description: Unpack Complex Matrix
Library: Numeric, Matrix

Class: SDFUNnPkCx_M

Derived From: MatrixBase

Parameters

Name Description Default Type Range
NumRows [number of rows in input matrix 2 int [1, o)
NumCols |number of columns in input matrix |2 int  |[1, )
Pin Inputs

Pin [Name |Description Signal Type

1 J|input complex matrix
Pin Outputs

Pin [Name Description [Signal Type
2 |output complex

Notes/Equations

1. The scalar outputs are each of the elements of the input matrix. The elements are

sent to the output row-by-row, top-to-bottom. Top row entries are sent first (left to
right) followed by the next row down, and so on.

2. For general information regarding numeric matrix component signals, refer to
Numeric Matrix Components (numeric).

539



Advanced Design System 2011.01 - Numeric Components

UnPkFix_M

Description: Unpack Fixed Matrix
Library: Numeric, Matrix

Class: SDFUNnPKFix_M

Derived From: MatrixBase

Parameters

Name Description Default Type Range
NumRows [number of rows in input matrix 2 int [1, o)
NumCols |number of columns in input matrix |2 int  |[1, )
Pin Inputs

Pin [Name |Description Signal Type

1 |input fix matrix
Pin Outputs

Pin [Name Description [Signal Type
2 |output fix

Notes/Equations

1. The scalar outputs are each of the elements of the input matrix. The elements are
sent to the output row-by-row, top-to-bottom. Top row entries are sent first (left to
right) followed by the next row down, and so on.

2. There are no fixed-point parameters for this component because fixed-point
arithmetic is not performed.

3. For general information regarding numeric matrix component signals, refer to
Numeric Matrix Components (numeric).



Advanced Design System 2011.01 - Numeric Components

UnPkInt_M

Description: Unpack Integer Matrix
Library: Numeric, Matrix

Class: SDFUNnPkInt_M

Derived From: MatrixBase

Parameters

Name Description
NumRows jnumber of rows in the input matrix

NumCols number of columns in the input
matrix

Pin Inputs

Pin Name Description Signal Type
1 Jinput int matrix
Pin Outputs

Pin Name Description |Signal Type
2 |output int

Notes/Equations

Default Type Range
2 int [1, o0)
2 int  |[1, o)

1. The scalar outputs are each of the elements of the input matrix. The elements are
sent to the output row-by-row, top-to-bottom. Top row entries are sent first (left to
right) followed by the next row down, and so on.

2. For general information regarding numeric matrix component signals, refer to
Numeric Matrix Components (numeric).

541



Advanced Design System 2011.01 - Numeric Components

Description: Unpack Matrix
Library: Numeric, Matrix
Class: SDFUnPk_M
Derived From: MatrixBase

Parameters

Name Description Default Type Range
NumRows [number of rows in input matrix 2 int [1, o)
NumCols |number of columns in input matrix |2 int  |[1, )
Pin Inputs

Pin [Name |Description Signal Type

1 |input real matrix
Pin Outputs

Pin [Name Description [Signal Type
2 |output real

Notes/Equations

1. The scalar outputs are each of the elements of the input matrix. The elements are
sent to the output row-by-row, top-to-bottom. Top row entries are sent first (left to
right) followed by the next row down, and so on.

2. For general information regarding numeric matrix component signals, refer to
Numeric Matrix Components (numeric).

542



Advanced Design System 2011.01 - Numeric Components

Numeric Signal Processing Components

Autocor (numeric)
Biquad (numeric)
BiquadCascade (numeric)
BlockAllPole (numeric)
BlockFIR (numeric)
BlockLattice (numeric)
BlockRLattice (numeric)
Burg (numeric)
ConvolCx (numeric)
Convolve (numeric)
CrossCorr (numeric)
DelayEstimator (numeric)
DTFT (numeric)

FFT Cx (numeric)

FIR (numeric)

FIR Cx (numeric)

FIR Fix (numeric)
Hilbert (numeric)

IIR (numeric)

IIR Cx (numeric)

IIR Fix (numeric)
Lattice (numeric)
LevDur (numeric)

LMS (numeric)

LMS Cx (numeric)

LMS Leak (numeric)
LMS OscDet (numeric)
PattMatch (numeric)
RLattice (numeric)
SlidWinAvg (numeric)

The numeric signal processing components provide basic signal processing functions on
single data points or arrays of data that are integer, double precision floating-point (real),
fixed-point (fixed), or complex values. Each component accepts a specific class of signal
and outputs a resultant signal. (These components do not accept any matrix class of
signal.)

If a component receives another class of signal, the received signal is automatically
converted to the signal class specified as the input of the component. Auto conversion
from a higher to a lower precision signal class may result in loss of information. The auto
conversion from timed, complex or floating-point (real) signals to a fixed signal uses a
default bit width of 32 bits with the minimum number of integer bits needed to represent
the value. For example, the auto conversion of the floating-point (real) value of 1.0
creates a fixed-point value with precision of 2.30; a value of 0.5 would create one of
precision of 1.31. For details on conversions between different classes of signals, refer to
Conversion of Data Types (ptolemy) in the ADS Ptolemy Simulation (ptolemy)
documentation.

Some components accept parameter values that are arrays of data. The syntax for

543



Advanced Design System 2011.01 - Numeric Components
referencing arrays of data as parameter values includes an explicit list of values, a
reference to a file that contains those values, or a combination of explicit values along
with file references. For details on using arrays of data for parameter values, refer to
Understanding Parameters (ptolemy) in the ADS Ptolemy Simulation (ptolemy)
documentation.

Some components operate with fixed-point numbers. These components use one or more
parameters that define the characteristics of the fixed-point processing. These parameters
include: OverflowHandler, OutputPrecision, RoundFix, ReportOverflow, and others. For
details on the use of these parameters for fixed-point components refer to Parameters for
Fixed-Point Components (ptolemy) in the ADS Ptolemy Simulation (ptolemy)
documentation. The arithmetic used by these components is two's complement.
Therefore, all precision values must specify at least one bit to the left of the decimal point
(used as sign bit).



Advanced Design System 2011.01 - Numeric Components

Autocor

Ly 2

Description: Autocorrelation estimator

Library: Numeric, Signhal Processing

Class: SDFAutocor

C++ Code: See doc/sp_items/SDFAutocor.html under your installation directory.

Parameters

Name Description Default Symbol Unit Type Range
NolInputsToAvg |number of input samples to average |256 N int (NoLags, )
NoLags number of lags to output 64 L int (0, )
Unbiased autocorrelation estimate bias: NO, YES |YES enum

Pin Inputs

Pin [Name |Description Signal Type
1 Jinput |input signal |real
Pin Outputs

Pin [Name Description Signal Type
2 |output output signal |real

Notes/Equations

1. Autocor estimates the autocorrelation function of the input signal. Every time the
component fires it reads N samples from its input and outputs 2xL values to its
output.

The output values represent the values of the input signal's autocorrelation function

r (k)
evaluated fork =-L+ 1, ..., L

r.
('numeric-09-02-03.gif! is output first and * is output last).
The 2 x L values written to the output make the output almost symmetrical (discard
the last sample to get a perfectly symmetric output).

2. Both unbiased and biased estimates are supported.
o If Unbiased=YES, the autocorrelation estimate is

545



Advanced Design System 2011.01 - Numeric Components
N_1-_|&
1
. . — x(n)x(n + |k
ri{k] —JN- k| Z

n=1>0

), (-L+1)<k<L

0, otherwise

The unbiased estimate does not guarantee a positive definite sequence, so a

power spectral estimate based on this autocorrelation estimate may have
negative components.

o If Unbiased = NO, the autocorrelation estimate is
N-1-|k|

1

. — x(in)x(n+|k)), (-L+1)<k<L

F (k)= |N Y, x(n)x(n+lkD), ( )

n=>0

0, otherwise

This estimate is biased because the outermost lags have fewer than N terms in
the summation, yet the summation is still normalized by N.

3. For general information regarding numeric signal processing component signals, refer
to Numeric Signal Processing Components (numeric).

References

1. A. V. Oppenheim and R. W. Schafer, Discrete-Time Signal Processing, Prentice-Hall:
Englewood Cliffs, NJ, 1989.

546



Advanced Design System 2011.01 - Numeric Components

Description: Biquad IIR Filter

Library: Numeric, Signhal Processing

Class: SDFBiquad

C++ Code: See doc/sp_items/SDFBiquad.html under your installation directory.

Parameters

Name Description Default Unit Type Range
D1 first-order denominator coefficient -1.1430 real |(-o0, o)
D2 second-order denominator coefficient|0.41280 real |(-oo0, c0)
NO zeroth-order numerator coefficient |0.067455 real |(-o0, o)
N1 first-order numerator coefficient 0.135 real |(-co0, c0)
N2 second-order numerator coefficient |0.067455 real |(-oo0, c0)
Pin Inputs

Pin Name Description Signal Type
1 Jinput real
Pin Outputs

Pin Name Description |Signal Type
2 |output real

Notes/Equations

1. Biquad is a 2-pole, 2-zero digital IIR filter (a biquad). This IIR filter has a Z-domain
transfer function of

-

-1 -2
Y(z) _ND+N13 +N23

= = 55 =

=

1+Dz  +Dyz

(8-1)
The default is a Butterworth filter with a cutoff 0.1 times sampling frequency.
2. The transfer function in Eq. (8-1) results in the following second order difference
equation.
y(rn) = Nyx(n)+Njx(n-1)+N.x(n-2)-Dy(n-1)-D,y(n - 2)

where
y(n) is the output for sample n
x(n) is the input for sample n
3. The transfer function in Eq. (8-1) is a linear time invariant system and can be

547



Advanced Design System 2011.01 - Numeric Components
rearranged to yield difference equation in direct form II as shown in Yield Difference
Equation in Direct Form II.
Indeed, it is the minimum number of delay elements required to implement a system
with transfer function given by Eq. (8-1). An implementation with the minimum
number of delay elements is also referred to as a canonic form implementation.

Yield Difference Equation in Direct Form II

[n] My~ Y[n]

F

[ =

4, See also: IIR (numeric), IIR_Cx (numeric), IIR_Fix (numeric).
5. For general information regarding numeric signal processing component signals, refer
to Numeric Signal Processing Components (numeric).

References

1. A. V. Oppenheim and R. W. Schafer, Discrete-Time Signal Processing, Prentice-Hall:
Englewood Cliffs, NJ, 1989.



Advanced Design System 2011.01 - Numeric Components

BiquadCascade

1 > ..2

¥ r
F I 3

Description: IIR filter with cascaded biquad IIR sections
Library: Numeric, Signhal Processing
Class: SDFBiquadCascade

Parameters

Name Description Default Unit Type Range
Taps |sets of six biquad coefficients |0.067455 0.135 0.067455 1.0 -1.143 0.4128 real array

Pin Inputs

Pin Name Description Signal Type

1 Jinput real
Pin Outputs
Pin Name Description Signal
Type
2 |output |The outputs from each of the biquads in the cascade,\n starting with the output multiple real
from last.

Notes/Equations

1. BiquadCascade is a cascade of 2-pole, 2-zero digital IIR filter (a biquad). This IIR
filter has a Z-domain transfer function of

_1 _2
: N..+N,z +N,z

H(z) = n?:m S et L
12)  py+Dyz 4Dy

2. Each biquad section is defined by six coefficients in order: N 5 N ;i N 5. D 5 D 4; D »; .

3. The multi-output pin contains each of the outputs of the cascade, starting with the
output from the last.

4, See also: Biquad (numeric), IIR (numeric), IIR_Cx (numeric), IIR_Fix (numeric).

5. For general information regarding numeric signal processing component signals, refer
to Numeric Signal Processing Components (numeric).

References

1. A. V. Oppenheim and R. W. Schafer, Discrete-Time Signal Processing, Prentice-Hall:
Englewood Cliffs, NJ, 1989.

549



Advanced Design System 2011.01 - Numeric Components

550



Advanced Design System 2011.01 - Numeric Components

BlockAllPole

Description: All-Pole Filter for Data Blocks

Library: Numeric, Signhal Processing

Class: SDFBlockAllPole

C++ Code: See doc/sp_items/SDFBlockAllPole.htm/ under your installation directory.

Parameters

Name Description Default Unit Type Range
BlockSize lnumber of inputs that use each coefficient set 128 int (0, )
Order number of new coefficients to read each time |16 int (0, )
Pin Inputs

Pin [Name |Description Signal Type

1 |signalln real

2 |coefs Coefficients of the denominator polynomial real
Pin Outputs

Pin Name Description Signal Type
3 |signalOut real

Notes/Equations

1. BlockAllPole implements an all-pole filter with coefficients that are periodically
updated from the outside. For each set of coefficients, a block of input samples is
processed, all in one firing.

2. The BlockSize parameter tells how often the updates occur. This integer parameter
specifies how many input samples are to be processed using each set of coefficients.
The Order parameter tells how many coefficients there are.

3. The transfer function of the filter is

1
H(z) = 1 2 M

l—dlz —dzz —-... —sz

where the d values are the externally specified coefficients and M is the value of the

Order parameter.

Decimation or interpolation is not supported.

See also: IIR (numeric), IIR_Cx (numeric), IIR_Fix (numeric).

For general information regarding numeric signal processing component signals, refer

to Numeric Signal Processing Components (numeric).

ouns

551



Advanced Design System 2011.01 - Numeric Components

BlockFIR

Description: FIR filter for data blocks

Library: Numeric, Signhal Processing

Class: SDFBlockFIR

C++ Code: See doc/sp_items/SDFBlockFIR.html under your installation directory.

Parameters

Name Description Default Unit Type Range

BlockSize number of inputs that use each coefficient set 128 int (0, )

Order number of new coefficients to read each time |16 int (0, )
Decimation decimation ratio 1 int (0, )
DecimationPhase |decimation phase 0 int [0, Decimation-1]
Interpolation interpolation ratio 1 int (0, )

Pin Inputs

Pin Name |Description |[Signal Type

1 |signalln real
2 |coefs real
Pin Outputs

Pin Name Description Signal Type
3 |signalOut real

Notes/Equations

1. BlockFIR implements an FIR filter with coefficients that are periodically updated from
the outside. For each set of coefficients, a block of input samples is processed, all in

one firing.
The BlockSize parameter tells how often updates occur. This integer parameter

specifies how many input samples are to be processed using each set of coefficients.

The Order parameter tells the number of coefficients.

2. This filter efficiently implements rational sample rate changes. When the Decimation

ratio is =1 the filter behaves as if it were followed by a DownSample component;
when the Interpolation ratio is set, the filter behaves as if it were preceded by an

UpSample component. However, the implementation is much more efficient than it
would be using UpSample and DownSample. A polyphase structure is used internally,
avoiding unnecessary use of memory and multiplication by 0. Arbitrary sample-rate
conversions by rational factors can be accomplished this way.

. The DecimationPhase parameter is somewhat subtle. It is equivalent to the Phase
parameter of the DownSample component. When decimating, samples are

552



Advanced Design System 2011.01 - Numeric Components

conceptually discarded (although a polyphase structure does not actually compute
the discarded samples). To decimate by a factor of three, one of every three outputs
is selected. The DecimationPhase parameter determines which of these is selected.
When DecimationPhase is 0 (default) the most recent samples are the ones selected.

4. When designing a multirate filter, avoid aliasing. One may assume that the filter
sample rate is the product of the Interpolation parameter and the input sample rate.
Equivalently, one may use the product of the Decimation parameter and the output
sample rate.

5. See also: IIR (numeric), IIR_Cx (numeric), IIR_Fix (numeric).

6. For general information regarding numeric signal processing component signals, refer
to Numeric Signal Processing Components (numeric).

References

1. F. ]J. Harris, "Multirate FIR Filters for Interpolating and Desampling," Handbook of
Digital Signal Processing, Academic Press, 1987.

553



Advanced Design System 2011.01 - Numeric Components

BlockLattice

Description: Forward Lattice Filter for Data Blocks

Library: Numeric, Signhal Processing

Class: SDFBlockLattice

C++ Code: See doc/sp_items/SDFBlockLattice.html under your installation directory.

Parameters

Name Description Default Unit Type Range
BlockSize lnumber of inputs that use each coefficient set 128 int (0, )
Order number of new coefficients to read each time |16 int (0, )
Pin Inputs

Pin Name |Description Signal Type

1 |signalln real
2 |coefs real
Pin Outputs

Pin Name Description Signal Type
3 |signalOut real

Notes/Equations

1. BlockLattice implements a forward lattice filter with coefficients that are periodically
updated from the outside. For each set of coefficients, a block of input samples is
processed, all in one firing.

The BlockSize parameter tells how often the updates occur. This parameter specifies
how many input samples are to be processed using each set of coefficients. The
Order parameter tells the number of coefficients.

2. The structure of this filter is shown below. The reflection (PARCOR) coefficients

should be specified left to right, K ; to K ., , as shown.

BlockLattice Filter Structure

554



Advanced Design System 2011.01 - Numeric Components

M= —— " ——e = & —= V[
T i
+, +,
S, R I o .
- unit delays
& -adders

3. The definition of reflection coefficients varies in the literature. The reflection
coefficients in [2] and [3] are the negative of the ones used by BlockLattice, which
correspond to the definition in most other texts, and to the definition of partial-
correlation (PARCOR) coefficients in the statistics literature.

The signs of the coefficients used in BlockLattice are appropriate for values given by
the LevDur and Burg components.

4. See also: BlockRLattice (numeric), Lattice (numeric), RLattice (numeric).

5. For general information regarding numeric signal processing component signals, refer
to Numeric Signal Processing Components (numeric).

References

1. J. Makhoul, "Prediction: A Tutorial Review," Proc. IEEE, Vol. 63, pp. 561-580, Apr.
1975.

2. S. M. Kay, Modern Spectral Estimation: Theory & Application, Prentice-Hall,
Englewood Cliffs, NJ, 1988.

3. S. Haykin, Modern Filters, MacMillan Publishing Company, New York, 1989.

555



Advanced Design System 2011.01 - Numeric Components

BlockRLattice

Description: Recursive Lattice Filter for Data Blocks

Library: Numeric, Signhal Processing

Class: SDFBlockRLattice

C++ Code: See doc/sp_items/SDFBlockRLattice.htm/ under your installation directory.

Parameters

Name Description Default Unit Type Range
BlockSize lnumber of inputs that use each coefficient set 128 int (0, )
Order number of new coefficients to read each time |16 int (0, )
Pin Inputs

Pin Name |Description Signal Type

1 |signalln real
2 |coefs real
Pin Outputs

Pin Name Description Signal Type
3 |signalOut real

Notes/Equations

1. BlockRLattice implements a block recursive lattice filter with coefficients that are
periodically updated from the outside. For each set of coefficients, a block of input
samples is processed, all in one firing.

The BlockSize parameter tells how often the updates occur. This parameter specifies
how many input samples are to be processed using each set of coefficients. The
Order parameter tells the number of coefficients.

2. The filter structure is shown below. The reflection (or PARCOR) coefficients should be

entered from K, to K, where K, through K | are specified as shown.

BlockRLattice Filter Structure

556



Advanced Design System 2011.01 - Numeric Components

- ————————— -
+KI +KI-1

_KI _KI-;
ST . ]
E =unit delays

& -adders

3. The definition of reflection coefficients varies in the literature. The reflection
coefficients in [2] and [3] are the negative of the ones used by BlockRLattice, which
correspond to the definition in most other texts, and to the definition of partial-
correlation (PARCOR) coefficients in the statistics literature.

The signs of the coefficients used in BlockRLattice are appropriate for values given by
the LevDur and Burg components.

4, See also: BlockLattice (numeric), Lattice (numeric), RLattice (numeric).

5. For general information regarding numeric signal processing component signals, refer
to Numeric Signal Processing Components (numeric).

References

1. J. Makhoul, "Linear Prediction: A Tutorial Review," Proc. IEEE, Vol. 63, pp. 561-580,
Apr. 1975.

2. S. M. Kay, Modern Spectral Estimation: Theory & Application, Prentice-Hall,
Englewood Cliffs, NJ, 1988.

3. S. Haykin, Modern Filters, MacMillan Publishing Company, New York, 1989.

557



Advanced Design System 2011.01 - Numeric Components

Burg

Description: Linear predictor coefficients estimator

Library: Numeric, Signhal Processing

Class: SDFBurg

C++ Code: See doc/sp_items/SDFBurg.html under your installation directory.

Parameters

Name Description Default Unit Type Range
Order order of the regression (also number of coefficients to generate) |8 int (0, )
NumInputs |number of inputs used to generate each set of coefficients 64 int (0, )
Pin Inputs

Pin |[Name |Description Signal Type

1 |input |Input random process. |real

Pin Outputs

Pin Name |Description Signal Type

2 |lp AR coefficients output. real

3 refl Lattice predictor coefficients output. |real

4  |errPower |Prediction error power. real

Notes/Equations

1. Burg uses Burg's algorithm to estimate the linear predictor coefficients of an input
random process. The number of inputs looked at is given by the NumInputs
parameter and the order of the autoregressive (AR) model is given by the Order
parameter. Order specifies how many outputs appear on the Ip and refl output
portholes.

These outputs are, respectively, the autoregressive (AR) parameters (also called the
linear predictor parameters), and the reflection coefficients. The autoregressive (AR)
coefficients are the estimated coefficients of the all-pole filter that could have
produced the observations (input data) given a white noise input.

2. The definition of reflection coefficients varies in the literature. The reflection
coefficients in [2] and [3] are the negative of the ones generated by Burg, which
correspond to the definition in most other texts, and to the definition of partial-
correlation (PARCOR) coefficients in the statistics literature.

3. The errPower output is the power of the prediction error as a function of the model
order. There are Order+1 output samples, and the first sample corresponds to the
prediction error of a Oth order predictor. This is simply an estimate of the input signal
power.

4. See also: BlockAllPole (numeric), BlockLattice (numeric), BlockRLattice (hnumeric),

558



Advanced Design System 2011.01 - Numeric Components
LevDur (numeric).

5. For general information regarding numeric signal processing component signals, refer
to Numeric Signal Processing Components (numeric).

References

1. J. Makhoul, "Linear Prediction: A Tutorial Review", Proc. IEEE, Vol. 63, pp. 561-580,
Apr. 1975.

2. S. M. Kay, Modern Spectral Estimation: Theory & Application, Prentice-Hall,
Englewood Cliffs, NJ, 1988.

3. S. Haykin, Modern Filters, MacMillan Publishing Company, New York, 1989.

559



Advanced Design System 2011.01 - Numeric Components

ConvolCx

Description: Complex causal convolution

Library: Numeric, Signhal Processing

Class: SDFConvolCx

C++ Code: See doc/sp_items/SDFConvolCx.html under your installation directory.

Parameters

Name Description Default Unit Type Range
TruncationDepth /maximum number of terms in convolution sum 256 int (0, )
Pin Inputs

Pin [Name |Description Signal Type

1 |inA complex
2 |inB complex
Pin Outputs

Pin |[Name |Description Signal Type
3 |out complex

Notes/Equations

1. ConvolCx convolves two complex causal finite sequences. Set TruncationDepth larger
than the number of output samples of interest; if it is smaller, you will get
unexpected results after TruncationDepth samples.

2. If one input has finite length and does not change over time, whereas the other input

can be arbitrarily long, use the FIR_Cx (numeric) component. Set the Taps

parameter of the FIR_Cx component to the values of the finite length sequence. For
example, if the finite length sequence is (1.5,3.1), (2.8,1.2), (-1.9,0.4), set Taps to

"(1.5,3.1) (2.8,1.2) (—-1.9,0.4)".

See also: Convolve (numeric).

For general information regarding numeric signal processing component signals, refer

to Numeric Signal Processing Components (numeric).

W

560



Advanced Design System 2011.01 - Numeric Components

Convolve

Description: Causal Convolution

Library: Numeric, Signhal Processing

Class: SDFConvolve

C++ Code: See doc/sp_items/SDFConvolve.html under your installation directory.

Parameters

Name Description Default Unit Type Range
TruncationDepth /maximum number of terms in convolution sum 256 int (0, )
Pin Inputs

Pin [Name |Description Signal Type

1 inA real
2 |inB real
Pin Outputs

Pin |[Name |Description Signal Type
3 |out real

Notes/Equations

1. Convolve convolves two causal finite sequences. Set TruncationDepth larger than the
number of output samples of interest; if it is smaller, you will get unexpected results
after TruncationDepth samples.

2. If one input has finite length and does not change over time, whereas the other input

can be arbitrarily long, use the FIR (numeric) component. Set the Taps parameter of

the FIR component to the values of the finite length sequence. For example, if the

finite length sequence is 1.5, 3.1, 2.8, 1.2, —=1.9, 0.4, set Taps to "1.5 3.1 2.8 1.2

—-1.9 0.4".

If one input has finite length and changes over time, whereas the other input can be

arbitrarily long, use the BlockFIR component. BlockFIR allows filtering of a signal in

fixed size blocks where each input block is filtered with a different set of coefficients.

See also: ConvolCx (numeric).

For general information regarding numeric signal processing component signals, refer

to Numeric Signal Processing Components (numeric).

W

References

1. A. V. Oppenheim and R. W. Schafer, Discrete-Time Signal Processing, Prentice-Hall:

561



Advanced Design System 2011.01 - Numeric Components
Englewood Cliffs, NJ, 1989.

562



Advanced Design System 2011.01 - Numeric Components

CrossCorr

Description: Cross-correlation

Library: Numeric, Signhal Processing

Class: SDFCrossCorr

C++ Code: See doc/sp_items/SDFCrossCorr.htm/ under your installation directory.

Parameters

Name Description Default Symbol Unit Type Range
NolInputsToAvg |number of input samples to average |256 N int (NoLags, )
NoLags number of lags to output 64 L int (0, )
Unbiased autocorrelation estimate bias: NO, YES |YES enum

Pin Inputs

Pin [Name |Description Signal Type

1 Jinput |input signal real

2 |input2 |second input signal |real

Pin Outputs

Pin [Name Description Signal Type

3 |output |output signal real

4 |delay |delay of input2 with respect to inputl |int

Notes/Equations

1. CrossCorr estimates the cross-correlation function of its two inputs. Every time the
component fires it reads N samples from each of its two inputs.
The number of values written on the output pin is 2xL. These values represent the
values of the cross-correlation function

evaluated fork = -L+ 1, ..., L

('numeric-09-12-25.gif! is output first and rxj"(L} is output last).
One sample per firing is written on delay pin 4; it represents the estimated delay (in
number of samples) of the second input signal with respect to the first input signal
(negative values mean that the signal at pin 1 is delayed with respect to the signal at
pin 2).
2. Both unbiased and biased estimates are supported.
e If Unbiased = YES, the autocorrelation estimate is

563



Advanced Design System 2011.01 - Numeric Components

N-1-F
1
AT LI . < k=
N—|&| Z x(n)-y(n+k), O0<k<L
- =10
rhj(k} = 4 ﬁ?’_l_lkl
1
N - |E| Z y(n)-x(n+kl), -L<k<O
n=1>0
0, otherwise

o If Unbiased = NO, the cross-correlation estimate is
N-1-k
i% Y x(n) yn+k), O<k<L

A rn=1>0
reglR) =1 N-1-Jkl
;.l; Z yn)-x(n+lk)), L<k<O

n=>0

0, otherwise

This estimate is biased because the outermost lags have fewer than N terms in
the summation, and yet the summation is still normalized by N.
3. For general information regarding numeric signal processing component signals, refer
to Numeric Signal Processing Components (numeric).

References

1. A. V. Oppenheim and R. W. Schafer, Discrete-Time Signal Processing, Prentice-Hall:
Englewood Cliffs, NJ, 1989.

564



Advanced Design System 2011.01 - Numeric Components

DelayEstimator

Celay 3
Ealimaior

Description: Delay Estimate

Library: Numeric, Signal Processing

Class: SDFDelayEstimator

C++ Code: See doc/sp_items/SDFDelayEstimator.htm/ under your installation directory.

Parameters

Name Description Default Unit Type Range
MaxSampleDelay Maximum delay estimate samples 100 int [0, Tstop]
Pin Inputs

Pin Name Description Signal Type
1 |Ref Reference input ,complex

2 |Test |Test input complex

Pin Outputs

Pin [Name Description |Signal Type
3 |Delay |Delay estimate |int

Notes/Equations

1. This component is used to estimate the delay between two different nodes in an RF
subsystem. When simulating multirate PLL systems, it is important to determine the
RF subsystem delay.

The structure of this component is shown in DelayEstimator Structure.

2. This is a single-rate component. Each firing, one input token is consumed for both
Ref pin 1 and Test pin 2 and one output token is produced.

Pin 1 must be connected to a reference signal and pin 2 must be connected to a test
signal. The estimated sample delay for the test signal relative to the reference signal
will be output.

3. The basic principle for detecting the delay is to perform a cross-correlation for two
signals in different nodes.

Two input complex signals are converted to an I,Q signal by two CxToPolar
components, then sent to CrossCorr for performing a cross-correlation to detect the
delay between the input signals. To make a single-rate component, the estimated
delay is repeated by using a Repeat component then output.

4, The MaxSampleDelay parameter is the upper bound for sample delay estimation; the
delay estimate is based on MaxSampleDelay number of input samples.

DelayEstimator Structure
565



Advanced Design System 2011.01 - Numeric Components

DelayEstimator Structure

Fags

—»

Part

CxToPolar

LLLEL

-

ot

Fort

CxToPaolar

References

CrossCorr

‘\m—h—h

Repeo i

I

Mumeric

Mumericsink

A

Repeal

— O

Forkz

Fort

1. M. Jeruchim, P. Balaban and K. Shanmugan, "Simulation of Communication System,"
Plenum Press, New York and London, 1992.

566



Advanced Design System 2011.01 - Numeric Components

DTFT

2__
y

Description: Discrete-time Fourier transform
Library: Numeric, Signhal Processing
Class: SDFDTFT

Parameters

Name Description Default Symbol Unit Type Range
Length length of input signal 8 L int (0, c0)
NumberOfSamples number of transform samples to output |128 N int (0, c0)
TimeBetweenSamples time between input samples (T) 1.0 T real |(0, o)
Pin Inputs

Pin [Name Description Signal Type

1 |signal |Signal to be transformed. complex

2 |omega [Frequency values at which to sample the transform. |real

Pin Outputs

Pin [Name |Description Signal Type

3 |dtft The samples of the transform. [complex

Notes/Equations

1. DTFT calculates the discrete-time Fourier transform (DTFT) of the sequence applied
at its signal input at each of the frequency points specified on the omega input. Every
time the component fires it reads L samples from its signal input and N samples from
its omega input and writes N samples to its output.

2. The DTFT of a sequence x[n] is a continuous function of w defined by

(=5

X(o) = Y lnlx cJon

n = —co
If sequence x[n] is obtained by sampling a continuous time signal x . (t) at intervals
of T, thatis x[n] = x . (nTs), and if X _ (f), the continuous-time Fourier transform
of x . (t), equals O for f > 1/(2T), then X(jw) and X _ (f) have the following
relationship:

567



Advanced Design System 2011.01 - Numeric Components

(=5

X (H = TxX(jx2=nfT) = Tx Z x[rn]xe

n=-e ,forf <1/ (2T).
3. The DTFT component can calculate X(jw) at arbitrary values of w for sequences x[n]
of finite length. Let the L values on the signal input be x[0], x[1], ..., x[L — 1] and
the N values on the omega input be w[0], w[1], ... , ®[N — 1]. Then the N values at

the output are:
L-1

X(oli]) = Z x[n]e

n=0 ,i=0,1,...,N—1.
where T is the time between samples (TimeBetweenSamples). Notice that in this last
formula the exponent of e has the extra term T compared to the formula defining the
DTFT. Therefore, to calculate the Fourier transform of the corresponding continuous
time signal xc(t) at the frequencies f; , i =0, 1, ... , N, generate the values w ; = 2nf

—j2nfTh

—jol[ilnT

; and apply them at the omega input. And, scale the output by T. The values f ; do

not need to span the entire frequency range of the signal or be equally spaced.

4, To access the example that shows how this component is used: from the Main
window, choose File > Open > Example > PtolemyDocExamples >
Numeric_Signal_Processing_wrk; from the Schematic window, choose File >
Open Design, DTFT_example.

5. For general information regarding numeric signal processing component signals, refer
to Numeric Signal Processing Components (numeric).

References

1. A. V. Oppenheim and R. W. Schafer, Discrete-Time Signal Processing, Prentice-Hall:
Englewood Cliffs, NJ, 1989.

568



Advanced Design System 2011.01 - Numeric Components

FFT_Cx

Description: Complex fast Fourier transform

Library: Numeric, Signhal Processing

Class: SDFFFT_Cx

C++ Code: See doc/sp_items/SDFFFT_Cx.html under your installation directory.

Parameters

Name |Description Default Unit Type Range
Order base 2 of the transform size 8 int [0, o0)
Size number of input samples to read 256 int [1, 2 Order;
Direction |direction of transform: Inverse, Forward |Forward enum

Pin Inputs

Pin [Name |Description Signal Type

1

input complex

Pin Outputs

Pin [Name Description [Signal Type

2

output complex

Notes/Equations

1.

o

FFT algorithms are based on the fundamental principle of decomposing the
computation of the discrete Fourier transform of a sequence of length N into
successively smaller DFT. Many different algorithms are generated based on the
decomposing principle, all with comparable improvements in computational speed.
FFT_Cx calculates the DFT of a complex input using the fast Fourier transform (FFT)
algorithm. FFT_Cx reads Size (default 256) complex samples, zero pads the data if

necessary, then takes an FFT of length 2 Order where Size < 2 Order |
The default value of Order is 8. Direction specifies a forward or inverse FFT. A single

firing of FFT_Cx consumes Size inputs and produces 2 ©rder outputs.

See also: DTFT (numeric).

For general information regarding numeric signal processing component signals, refer
to Numeric Signal Processing Components (numeric).

References

1.

A. V. Oppenheim and R. W. Schafer, Discrete-Time Signal Processing, Prentice-Hall:
Englewood Cliffs, NJ, 1989.
569



Advanced Design System 2011.01 - Numeric Components

570



Advanced Design System 2011.01 - Numeric Components

FIR

e

Description: FIR filter

Library: Numeric, Signhal Processing

Class: SDFFIR

C++ Code: See doc/sp_items/SDFFIR.htm/ under your installation directory.

Parameters
Name Description Default Unit Type |Range
Taps filter tap values -.040609 -.001628 .17853 .37665 .37665 real
.17853 -.001628 -.040609 array
Decimation decimation 1 int [1, )
ratio
DecimationPhase |decimation 0 int [o,
phase Decimation-1]
Interpolation interpolation 1 int [1, )
ratio
Pin Inputs

Pin [Name |Description Signal Type
1 |signalln real
Pin Outputs

Pin Name Description Signal Type

2 |signalOut real

Notes/Equations

1.

3.

FIR implements a finite-impulse response filter with multirate capability. The default
tap coefficients correspond to an eighth-order, equiripple, linear-phase, lowpass
filter. The cutoff frequency is approximately one-third of the Nyquist frequency.

. The filter coefficients are specified by the Taps parameter. The filter coefficients may

be specified directly or these may be read from a file. To load filter coefficients from a
file, replace the default coefficients with the string <filename, for example,

"< /filters/fl.txt", (use an absolute path name for the filename to allow the FIR filter
to work as expected regardless of the directory where the simulation process actually
runs). For details on using arrays of data for parameter values, refer to
Understanding Parameters (ptolemy) in the ADS Ptolemy Simulation (ptolemy)
documentation.

This filter efficiently implements rational sample rate changes. When the Decimation
ratio is > 1, the filter behaves exactly as if it were followed by a DownSample
component; similarly, when the Interpolation ratio is set, the filter behaves as if it

571



Advanced Design System 2011.01 - Numeric Components
were preceded by an UpSample component. However, the implementation is much
more efficient than it would be using UpSample and DownSample. A polyphase
structure is used internally, avoiding unnecessary use of memory and unnecessary
multiplication by 0. Arbitrary sample-rate conversions by rational factors can be
accomplished this way.

4, The DecimationPhase parameter is somewhat subtle. It is equivalent to the Phase
parameter of the DownSample component. When decimating, samples are
conceptually discarded (although a polyphase structure does not actually compute
the discarded samples). For example, to decimate by a factor of 3, one of every 3
outputs is selected. The DecimationPhase parameter determines which of these is
selected. If DecimationPhase is 0 (default), the most recent samples are selected.

5. When designing a multirate filter, avoid accidentally introducing aliasing. One may
assume that the filter sample rate is the product of the Interpolation parameter and
the input sample rate. Equivalently, one may use the product of the Decimation
parameter and the output sample rate.

6. See also: FIR_Cx (numeric), FIR_Fix (numeric).

7. For general information regarding numeric signal processing component signals, refer
to Numeric Signal Processing Components (numeric).

References

1. F. ]J. Harris, "Multirate FIR Filters for Interpolating and Desampling," Handbook of
Digital Signal Processing, Academic Press, 1987.

2. A. V. Oppenheim and R. W. Schafer, Discrete-Time Signal Processing, Prentice-Hall:
Englewood Cliffs, NJ, 1989.

3. P. P. Vaidyanathan, "Multirate Digital Filters, Filter Banks, Polyphase Networks, and
Applications: A Tutorial," Proc. of the IEEE, vol. 78, no. 1, pp. 56-93, Jan. 1990.

572



Advanced Design System 2011.01 - Numeric Components

FIR_Cx

1 ) —Trlilili 2

Description: Complex FIR filter

Library: Numeric, Signhal Processing

Class: SDFFIR_Cx

C++ Code: See doc/sp_items/SDFFIR_Cx.html under your installation directory.

Parameters

Name Description |Default Unit Type Range

Taps filter tap (-.040609,0.0) (-.001628,0.0) (.17853,0.0) complex
values (.37665,0.0)(.37665,0.0) (.17853,0.0) (- array

.001628,0.0) (-.040609,0.0)

Decimation decimation 1 int [1, o0)
ratio

DecimationPhase |decimation 0 int [o,
phase Decimation-

1]

Interpolation interpolation |1 int [1, o0)
ratio

Pin Inputs

Pin [Name |Description Signal Type
1 |signalln complex
Pin Outputs

Pin Name Description Signal Type
2 |signalOut complex

Notes/Equations

1. The FIR_Cx component implements a complex-valued finite-impulse response filter
with multirate capability. The default tap coefficients correspond to an eighth-order,
equiripple, linear-phase, lowpass filter. The cutoff frequency is approximately one-
third of the Nyquist frequency.

2. The filter coefficients are specified by the Taps parameter. The real and imaginary
parts should be enclosed in parenthesis, for example (0.1,0.3). The filter coefficients
may be specified directly or these may be read from a file. To load filter coefficients
from a file, replace the default coefficients with the string <filename, for example,
"< /filters/fl.txt", (use an absolute path name for the filename to allow the FIR filter
to work as expected regardless of the directory where the simulation process actually
runs).

3. For details on complex parameter values, refer to Complex-Valued Parameters
(ptolemy) in the ADS Ptolemy Simulation (ptolemy) documentation.

573



Advanced Design System 2011.01 - Numeric Components

For details on using complex arrays of data, refer to Value Types (ptolemy) in the
ADS Ptolemy Simulation (ptolemy) documentation.

4, This filter efficiently implements rational sample rate changes. When the Decimation
ratio is 21, the filter behaves exactly as if it were followed by a DownSample
component; similarly, when the Interpolation ratio is set, the filter behaves as if it
were preceded by an UpSample component. However, the implementation is much
more efficient than it would be using UpSample and DownSample. A polyphase
structure is used internally, avoiding unnecessary use of memory and unnecessary
multiplication by 0. Arbitrary sample-rate conversions by rational factors can be
accomplished this way.

5. The DecimationPhase parameter is somewhat subtle. It is equivalent to the Phase
parameter of the DownSample component. When decimating, samples are
conceptually discarded (although a polyphase structure does not actually compute
the discarded samples). For example, to decimate by a factor of 3, one of every 3
outputs is selected. The DecimationPhase parameter determines which of these is
selected. If DecimationPhase is 0 (default), the most recent samples are selected.

6. When designing a multirate filter, avoid accidentally introducing aliasing. One may
assume that the filter sample rate is the product of the Interpolation parameter and
the input sample rate. Equivalently, one may use the product of the Decimation
parameter and the output sample rate.

7. See also: FIR (numeric), FIR_Fix (numeric).

8. For general information regarding numeric signal processing component signals, refer
to Numeric Signal Processing Components (numeric).

References

1. F. ]J. Harris, "Multirate FIR Filters for Interpolating and Desampling," Handbook of
Digital Signal Processing, Academic Press, 1987.

574



FIR_Fix

L

B

Advanced Design System 2011.01 - Numeric Components

’2

Description: Fixed-Point FIR Filter
Library: Numeric, Signhal Processing

Class: SDFFIR_Fix

Derived From: SDFFix
C++ Code: See doc/sp_items/SDFFIR_Fix.html under your installation directory.

Parameters
Name
OverflowHandler
ReportOverflow

RoundFix

Taps

Decimation
DecimationPhase

Interpolation

UseArrivingPrecision

InputPrecision

TapPrecision

AccumulationPrecision
OutputPrecision

Pin Inputs

Description

output overflow characteristic:
wrapped, saturate, zero_saturate,
warning

simulation overflow error report
option: DONT_REPORT, REPORT

fixed-point computations,
assignments, and data type
conversions option: TRUNCATE,
ROUND

filter tap values

decimation ratio
decimation phase

interpolation ratio

use precision of arriving data: NO,
YES

precision of input signal, in bits (used
only if UseArrivingPrecision is set to
NO)

precision of tap values, in bits
precision of accumulation, in bits

precision of output in bits and
accumulation

Pin [Name |Description Signal Type

1 |signalln
Pin Outputs

fix

575

Default
wrapped

REPORT

TRUNCATE

-.040609 -.001628
.17853 .37665 .37665
.17853 -.001628 -
.040609

1
0

NO

2.14

2.14

2.14
2.14

Type Range

enum

enum

enum

fix array

int [1, )

int [o,
Decimation-
1]

int [1, o0)

enum

precision

precision

precision

precision



Advanced Design System 2011.01 - Numeric Components
Pin Name Description Signal Type
2 |signalOut fix

Notes/Equations

1. FIR implements a finite-impulse response filter with fixed-point capability. The default
tap coefficients correspond to an eighth-order, equiripple, linear-phase, lowpass
filter. The cutoff frequency is approximately one-third of the Nyquist frequency.

2. The filter coefficients are specified by the Taps parameter. During filter output
computation, the precision of the filter taps is converted according to the
TapPrecision parameter. The filter coefficients may be specified directly or these may
be read from a file. To load filter coefficients from a file, replace the default
coefficients with the string <filename, for example, "</filters/fl1.txt", (use an
absolute path name for the filename to allow the FIR filter to work as expected
regardless of the directory where the simulation process actually runs). For details on
using arrays of data for parameter values, refer to Understanding Parameters
(ptolemy) in the ADS Ptolemy Simulation (ptolemy) documentation.

3. This filter efficiently implements rational sample rate changes. When the Decimation
ratio is =1, the filter behaves exactly as if it were followed by a DownSample
component; similarly, when the Interpolation ratio is set, the filter behaves as if it
were preceded by an UpSample component. However, the implementation is much
more efficient than it would be using UpSample and DownSample. A polyphase
structure is used internally, avoiding unnecessary use of memory and unnecessary
multiplication by 0. Arbitrary sample-rate conversions by rational factors can be
accomplished this way.

4, The DecimationPhase parameter is somewhat subtle. It is equivalent to the Phase
parameter of the DownSample component. When decimating, samples are
conceptually discarded (although a polyphase structure does not actually compute
the discarded samples). For example, to decimate by a factor of 3, one of every 3
outputs is selected. The DecimationPhase parameter determines which of these is
selected. If DecimationPhase is 0 (default), the most recent samples are selected.

5. When designing a multirate filter, avoid accidentally introducing aliasing. One may
assume that the filter sample rate is the product of the Interpolation parameter and
the input sample rate. Equivalently, one may use the product of the Decimation
parameter and the output sample rate.

6. If the fixed-point operations cannot fit into the precision specified, overflow occurs
with the overflow characteristic specified by OverflowHandler. If ReportOverflow =
REPORT, after the simulation has finished the number of overflow errors (if any) will
be reported. RoundFix identifies whether fixed-point computations are truncate or
round method. If UseArrivingPrecision = NO, the input is cast to the precision
specified by InputPrecision. TapPrecision indicates how many bits are used to
represent the filter taps.

For details on these fixed-point parameters refer to Parameters for Fixed-Point
Components (ptolemy) in the ADS Ptolemy Simulation (ptolemy) documentation.

7. If UseArrivingPrecision = YES, then components that send a NULL particle on their
first firing should not be connected at the input of this component. For example,
when a Delay component is connected at its input, such a NULL particle has a
precision of 1.0 and the output value will be forced to 0.

8. See also: FIR (numeric), FIR_Cx (numeric), DownSample (numeric), UpSample
(numeric).

9. For general information regarding numeric signal processing component signals, refer

576



Advanced Design System 2011.01 - Numeric Components
to Numeric Signal Processing Components (numeric).

References

1. F. ]J. Harris, "Multirate FIR Filters for Interpolating and Desampling," Handbook of
Digital Signal Processing, Academic Press, 1987.

2. P. P. Vaidyanathan, "Multirate Digital Filters, Filter Banks, Polyphase Networks, and
Applications: A Tutorial," Proc. of the IEEE, vol. 78, no. 1, pp. 56-93, Jan. 1990.

577



Advanced Design System 2011.01 - Numeric Components

Hilbert

1 _.'_2

Description: Hilbert transform

Library: Numeric, Signhal Processing

Class: SDFHilbert

C++ Code: See doc/sp_items/SDFHilbert.html under your installation directory.

Parameters

Name Description Default Unit Type Range
Decimation decimation ratio 1 int  |[1, )
DecimationPhase |decimation phase 0 int  |[0, Decimation-1]
Interpolation interpolation ratio 1 int [1, )

N number of taps in the Hilbert filter |64 int  |[1, )

Pin Inputs

Pin Name |Description |Signal Type
1 |signalln real
Pin Outputs

Pin Name Description |Signal Type
2 |signalOut real

Notes/Equations

1. This component approximates the Hilbert transform of the input signal by using an
FIR filter. The response is truncated symmetrically at — N/2 and N/2[1], which is
accurate enough for some applications. For high accuracy it may be necessary to use
the Parks-McClellan algorithm [2] to design a custom Hilbert transformer filter [1,3].

2. The Hilbert transform requires an infinite length set of FIR tap coefficients for

accurate representation. This model approximates the Hilbert transform with a finite

list of FIR taps. For practical accuracy, it is recommended N>64.

See also: FIR (numeric).

For general information regarding numeric signal processing component signals, refer

to Numeric Signal Processing Components (numeric).

W

References

1. A. V. Oppenheim and R. W. Schafer, Discrete-Time Signal Processing, Prentice-Hall:
Englewood Cliffs, NJ, 1989.
2. T. W. Parks and J. H. McClellan, "Chebyshev Approximation for Nonrecursive Digital

578



Advanced Design System 2011.01 - Numeric Components
Filters With Linear Phase," IEEE Trans. on Circuit Theory, vol. 19, no. 2, pp. 189-194,
March 1972.
. L. R. Rabiner, J. H. McClellan, and T. W. Parks, "FIR Digital Filter Design Techniques
Using Weighted Chebyshev Approximation," Proc. of the IEEE, vol. 63, no. 4, pp.
595-610, April 1975.

579



Advanced Design System 2011.01 - Numeric Components

IIR

Description: IIR Filter

Library: Numeric, Signhal Processing

Class: SDFIIR

C++ Code: See doc/sp_items/SDFIIR.html under your installation directory.

Parameters

Name Description Default Unit Type Range
Gain gain 1 real (-c0, )
Numerator |numerator coefficients |.5.25.1 real array
Denominator [denominator coefficients |1 .5 .3 real array

Pin Inputs

Pin [Name |Description Signal Type
1 |signalln real
Pin Outputs

Pin Name Description Signal Type
2 |signalOut real

Notes/Equations

1. IIR implements an infinite impulse response filter of arbitrary order in a direct form II
as shown in IIR Filter Structure.

2. The parameters specify H(z), the Z-transform of an impulse response h(n). The
output of IIR is the convolution of the input with h(n).
The transfer function is of the form

Ni _l'l
Hiz) = G- i T
DIL:-:_ ]

where
Gain specifies G

Numerator and Denominator specify N(z "1 ) and D(z "1 ), respectively.

Both arrays start with the constant terms of the polynomial and decrease in powers
of z (increase in powers of 1/z). (The constant term of D is not omitted, as is
common in other programs that assume it has been normalized to unity.)

IIR Filter Structure

580



Advanced Design System 2011.01 - Numeric Components

Zn] - ¥ [n]
i y Mo i
Cy My
L i -
' [i]
I Dy i M e I
T
A i
Dy My

3. Numerator and Denominator array values can be specified directly or read from a file.
To load values for a file, replace the default values with the string <filename, for
example, "</filters/fl1.txt", (use an absolute path name for the filename to allow
obtain expected results regardless of the directory where the simulation process
actually runs). For details on using arrays of data for parameter values, refer to
Understanding Parameters (ptolemy) in the ADS Ptolemy Simulation (ptolemy)
documentation.

4, The numerical finite precision noise increases with the filter order. To minimize this
distortion, expand the filter into a parallel or cascade form.

5. See also: Biquad (numeric), IIR_Cx (numeric), IIR_Fix (numeric).

6. For general information regarding numeric signal processing component signals, refer
to Numeric Signal Processing Components (numeric).

References

1. A. V. Oppenheim and R. W. Schafer, Discrete-Time Signal Processing, Prentice-Hall:
Englewood Cliffs, NJ, 1989.

581



Advanced Design System 2011.01 - Numeric Components

Description: Complex IIR Filter
Library: Numeric, Signal Processing
Class: SDFIIR_Cx

Parameters

Name Description Default Unit Type Range
Gain gain 1.0 complex

Numerator |numerator coefficients [(0.5, 0) (0.25, 0) (0.1, 0) complex array
Denominator [denominator coefficients |(1.0, 0) (0.5, 0) (0.3, 0) complex array

Pin Inputs

Pin [Name |Description Signal Type
1 |signalln complex
Pin Outputs

Pin Name Description Signal Type
2 |signalOut complex

Notes/Equations

1. IIR_Cx implements a complex infinite impulse response (IIR) filter of arbitrary order
in a direct form II realization.

2. For details on complex parameter values, refer to Complex-Valued Parameters
(ptolemy) in the ADS Ptolemy Simulation (ptolemy) documentation.
For details on using complex arrays of data, refer to Value Types (ptolemy) in the
ADS Ptolemy Simulation (ptolemy) documentation.

3. The parameters specify H(z), the Z-transform of an impulse response h(n). The
output is the convolution of the input with h(n). The transfer function is of the form

N(z_l]

D(z_l)

H(z) =G

where
Gain specifies G

Numerator and Denominator specify N(z "1 ) and D(z "1 ) , respectively.
Both arrays start with the constant terms of the polynomial and decrease in powers
of z (increase in powers of 1/z). (The constant term of D is not omitted, as is
common in other programs that assume it has been normalized to unity.)

4. The Numerator and Denominator array values may be specified directly or these may
be read from a file. To load array values for a file, replace the default values with the

582



Advanced Design System 2011.01 - Numeric Components

string <filename, for example, "</filters/f1.txt", (use an absolute path name for the
filename to allow obtain expected results regardless of the directory where the
simulation process actually runs).
For details on using arrays of data for parameter values, refer to Understanding
Parameters (ptolemy) in the ADS Ptolemy Simulation (ptolemy) documentation.

5. The numerical finite precision noise increases with the filter order. To minimize this
distortion, it is often desirable to expand the filter into a parallel or cascade form.

6. See also: Biquad (numeric), IIR (numeric), IIR_Fix (numeric).

7. For general information regarding numeric signal processing component signals, refer
to Numeric Signal Processing Components (numeric).

References

1. A. V. Oppenheim and R. W. Schafer, Discrete-Time Signal Processing, Prentice-Hall:
Englewood Cliffs, NJ, 1989.

583



Advanced Design System 2011.01 - Numeric Components

Description: Fixed IIR Filter
Library: Numeric, Signhal Processing
Class: SDFIIR_Fix

Derived From: SDFFix

C++ Code: See doc/sp_items/SDFIIR_Fix.htm/ under your installation directory.

Parameters

Name Description

OverflowHandler output overflow characteristic: wrapped, saturate,

zero_saturate, warning

ReportOverflow simulation overflow error report option: DONT_REPORT,
REPORT

RoundFix fixed-point computations, assignments, and data type
conversions option: TRUNCATE, ROUND

Gain gain

Numerator numerator coefficients

Denominator denominator coefficients

CoefPrecision precision of coefficients

UseArrivingPrecision |use precision of arriving data: NO, YES

InputPrecision precision of input signal, in bits (used only if
UseArrivingPrecision is set to NO)

AccumpPrecision precision of state, in bits

StatePrecision precision of state, in bits

OutputPrecision precision of output in bits and accumulation

Pin Inputs

Pin [Name |Description Signal Type
1 |signalln fix
Pin Outputs

Pin Name Description Signal Type
2 |signalOut fix

Notes/Equations

Default
wrapped

REPORT

TRUNCATE

.5.25.1

2.14
NO
2.14

2.14
2.14
2.14

Type
enum

enum

enum

real

real
array

real
array

precision
enum
precision

precision
precision
precision

Range

(-o0,

1. IIR_Fix implements an infinite impulse response filter in a direct form II realization

using fixed point arithmetic.
584



Advanced Design System 2011.01 - Numeric Components
The transfer function is of the form
-1
N(z ')

D(z_l)

H(z) = G

where

N() and D() are polynomials

Gain specifies G

Numerator and Denominator specify N() and D(), respectively.

Both arrays start with the constant terms of the polynomial and decrease in powers
of z (increase in powers of 1/z). The coefficients are rounded to the precision given
by CoefPrecision. (The constant term of D is not omitted, as is common in other
programs that assume that it has been normalized to unity. Also, before the
numerator and denominator coefficients are quantized, these are rescaled so that the
leading denominator coefficient is unity. The gain is multiplied through the numerator
coefficients as well.)

2. The numerical finite precision noise increases with the filter order. To minimize this
distortion, expand the filter into a parallel or cascade form.

3. Quantization is performed in several places. First, the coefficients are quantized
(rounded) to CoefPrecision. This is done after the coefficients have been rescaled to
make the initial denominator coefficient unity. The input is optionally quantized
(rounded) to precision specified by InputPrecision. The multiplication of the state by
the coefficients preserves full precision, but the result is quantized to AccumPrecision
after being added to other products. The state variables are stored with the precision
given by StatePrecision. Before being sent out, the output values are quantized
(rounded) to OutputPrecision.

4, The Numerator and Denominator array values may be specified directly or these may
be read from a file. To load array values for a file, replace the default values with the
string <filename, for example, "</filters/fl1.txt", (use an absolute path name for the
filename to allow obtain expected results regardless of the directory where the
simulation process actually runs).

For details on using arrays of data for parameter values, refer to Understanding
Parameters (ptolemy) in the ADS Ptolemy Simulation (ptolemy) documentation.

5. If the fixed-point operations cannot fit into the precision specified, overflow occurs
with the overflow characteristic specified by OverflowHandler. If ReportOverflow =
REPORT, after the simulation has finished the number of overflow errors (if any) will
be reported. RoundFix identifies whether fixed-point computations are truncate or
round method. If UseArrivingPrecision = NO, the input is cast to the precision
specified by InputPrecision. TapPrecision indicates how many bits are used to
represent the filter taps.

For details on these fixed-point parameters refer to Parameters for Fixed-Point
Components (ptolemy) in the ADS Ptolemy Simulation (ptolemy) documentation.

6. If UseArrivingPrecision = YES, then components that send a NULL particle on their
first firing should not be connected at the input of this component. For example,
when a Delay component is connected at its input, such a NULL particle has a
precision of 1.0 and the output value will be forced to 0.

7. See also: Biquad (numeric), IIR (numeric), IIR_Cx (numeric).

8. For general information regarding numeric signal processing component signals, refer
to Numeric Signal Processing Components (numeric).

References
585



Advanced Design System 2011.01 - Numeric Components

1. A. V. Oppenheim and R. W. Schafer, Discrete-Time Signal Processing, Prentice-Hall:
Englewood Cliffs, NJ, 1989.

586



Advanced Design System 2011.01 - Numeric Components

Lattice

1 . vy .2
AV

Description: Lattice Filter

Library: Numeric, Signhal Processing

Class: SDFLattice

C++ Code: See doc/sp_items/SDFLattice.html under your installation directory.

Parameters
Name Description Default Unit Type Range
ReflectionCoefs |reflection or PARCOR 0.804534 -0.820577 0.521934 - real
coefficients 0.205 array
Pin Inputs

Pin Name |Description |Signhal Type
1 |signalln real
Pin Outputs

Pin Name Description |Signal Type
2 |signalOut real

Notes/Equations

1. Lattice implements a Lattice filter. The structure of this filter is shown in Lattice Filter
Structure. The reflection (PARCOR) coefficients should be specified left to right, K ; to

K, , as shown.

Using the same coefficients in the RLattice component will result in the inverse
transfer function.

2. The default reflection coefficients correspond to the optimal linear predictor for an AR
process generated by filtering white noise with the following filter:

H(z) =

-1 ) 3 4
1-2z "+191z " -091z ~ +0.205=

Because this filter is minimum phase, the transfer function of the lattice filter is H "1

(2).

Lattice Filter Structure

587



Advanced Design System 2011.01 - Numeric Components

%[nl— - = ——— - - o — 7[n]
=+ +,
e -+,
L |7 - —h-h- R
=unit delays
& -adders

3. To read other reflection coefficients from a file, replace the default coefficients with
<filename>. Use the full path of the filename so that the simulation will work
correctly without regard to the directory from which it runs. For details on using
arrays of data for parameter values, refer to Understanding Parameters (ptolemy) in
the ADS Ptolemy Simulation (ptolemy) documentation.

4. The definition of reflection coefficients varies in the literature. The reflection
coefficients in [2] and [3] are the negative of the ones used by Lattice, which
correspond to the definition in most other texts, and to the definition of partial-
correlation (PARCOR) coefficients in the statistics literature.

The signs of the coefficients used in Lattice are appropriate for values given by the
LevDur and Burg components.

5. See also: BlockLattice (numeric), BlockRLattice (numeric), RLattice (numeric).

6. For general information regarding numeric signal processing component signals, refer
to Numeric Signal Processing Components (numeric).

References

1. J. Makhoul, "Prediction: A Tutorial Review," Proc. IEEE, Vol. 63, pp. 561-580, Apr.
1975.

2. S. M. Kay, Modern Spectral Estimation: Theory & Application, Prentice-Hall,
Englewood Cliffs, NJ, 1988.

3. S. Haykin, Modern Filters, MacMillan Publishing Company, New York, 1989.

588



Advanced Design System 2011.01 - Numeric Components

LevDur
T

Description: FIR and lattice linear predictor coefficients

Library: Numeric, Signhal Processing

Class: SDFLevDur

C++ Code: See doc/sp_items/SDFLevDur.htm/ under your installation directory.

Parameters

Name Description Default |Unit Type Range
Order |order of recursion |8 int (0, )

Pin Inputs

Pin [Name Description Signal Type

1 |autocor Autocorrelation estimate |real

Pin Outputs

Pin Name |Description Signal Type
2 |lp FIR linear predictor coefficients output. |real
3 refl Lattice predictor coefficients output. real
4  |errPower |Prediction error power. real

Notes/Equations

1.

LevDur takes as inputs an autocorrelation function, or estimates produced by the
Autocor component, and uses the Levinson-Durbin algorithm to compute both
reflection coefficients and FIR linear predictor coefficients.

If the Autocor component is set so that its Unbiased parameter is 0, then the
combined effect of Autocor and LevDur is called the autocorrelation algorithm. Order
should be the same as the Autocor NoLags parameter.

On the errPower output, a sequence of Order+1 samples gives the prediction error
power for each predictor order from 0 to Order. The first sample, which corresponds
to the Oth-order predictor, is an estimate of the power of the input process. (For
signals without noise, the errPower output can sometimes end up being a small
negative number.)

The Ip output gives the coefficients of an FIR filter that performs linear prediction for
the input process. This set of coefficients is suitable for directly feeding the BlockFIR
filter component. The number of coefficients produced is equal to Order.

The refl output is the reflection coefficients, suitable for feeding directly to the
BlockLattice component, which will then generate the forward and backward
prediction error. The number of coefficients produced is equal to Order.

The definition of reflection coefficients varies in the literature. The reflection
coefficients in [2] and [3] are the negative of the ones generated by LevDur, which

589



Advanced Design System 2011.01 - Numeric Components
correspond to the definition in most other texts, and to the definition of partial-
correlation (PARCOR) coefficients in the statistics literature.
7. See also: Autocor (numeric), BlockFIR (numeric), BlockLattice (numeric).

8. For general information regarding numeric signal processing component signals, refer
to Numeric Signal Processing Components (numeric).

References

1. J. Makhoul, "Linear Prediction: A Tutorial Review," Proc. IEEE, vol. 63, pp. 561-580,
Apr. 1975.

2. S. M. Kay, Modern Spectral Estimation: Theory & Application , Prentice-Hall,
Englewood Cliffs, NJ, 1988

3. S. Haykin, Modern Filters, MacMillan Publishing Company, New York, 1989.

590



Advanced Design System 2011.01 - Numeric Components

LMS

?

._3

Description: LMS adaptive filter

Libr

ary: Numeric, Signal Processing

Class: SDFLMS
C++ Code: See doc/sp_items/SDFLMS.html under your installation directory.

Parameters
Name Description Default Unit Type |Range
Taps filter tap values -.040609 -.001628 .17853 .37665 real
.37665 .17853 -.001628 -.040609 array
Decimation decimation ratio 1 int [1, )
DecimationPhase decimation phase 0 int [0,
Decimation-1]

StepSize adaptation step size 0.01 real (0, )
ErrorDelay update loop delay 1 int [1, c0)
SaveTapsFile filename in which to save string

final tap values
Pin Inputs
Pin [Name |Description Signal Type
1 |signalln real
2 lerror real
Pin Outputs
Pin Name Description Signal Type
3 |signalOut real

Notes/Equations

1.

LMS is an adaptive filter using the least-mean square algorithm. The initial filter
coefficients are given by the Taps parameter. The default initial coefficients give an
8th-order, linear phase lowpass filter. To read initial coefficients from a file, replace
the default coefficients with <filename>, preferably specifying a complete path. For
details on using arrays of data for parameter values, refer to Understanding
Parameters (ptolemy) in the ADS Ptolemy Simulation (ptolemy) documentation.
LMS supports decimation, but not interpolation.
When used correctly, this LMS adaptive filter will adapt to try to minimize the mean-
squared error of the signal at its error input [1]. The output of the filter should be
compared to (subtracted from) some reference signal to produce an error signal.
That error signal should be fed back to the error input. The ErrorDelay parameter
must equal the total number of delays in the path from the output of the filter back
591



Advanced Design System 2011.01 - Numeric Components

to the error input. This ensures correct alignment of the adaptation algorithm. The

number of delays must be greater than 0 or the simulation will deadlock.

The adaptation algorithm is the well-known LMS, or stochastic-gradient, algorithm.
3. If the SaveTapsFile string is non-null, a file will be created with the name given by
that string, and the final tap values will be stored there after the run has completed.
See also: LMS_Cx (numeric), LMS_Leak (numeric), LMS_OscDet (numeric).
For general information regarding numeric signal processing component signals, refer
to Numeric Signal Processing Components (numeric).

uk

References

1. S. Haykin, Adaptive Filter Theory, Prentice Hall: Englewood Cliffs, NJ. 1991. 2nd ed.

592



Advanced Design System 2011.01 - Numeric Components

Description: Complex LMS adaptive filter

Library: Numeric, Signhal Processing

Class: SDFLMS_Cx

C++ Code: See doc/sp_items/SDFLMS_Cx.htm/ under your installation directory.

Parameters
Name Description Default Unit Type Range
Taps filter tap values (-.040609,0.0) (-.001628,0.0) complex
(.17853,0.0) (.37665,0.0)(.37665,0.0) array
(.17853,0.0) (-.001628,0.0) (-
.040609,0.0)
Decimation decimation ratio |1 int [1, o0)
DecimationPhase | decimation phase |0 int [O,
Decimation-
1]
StepSize adaptation step 0.01 real (0, )
size
ErrorDelay update loop delay |1 int [1, o)
SaveTapsFile filename in which string
to save final tap
values
Pin Inputs

Pin [Name |Description Signal Type

1 |signalln complex
2 |error complex
Pin Outputs

Pin Name Description Signal Type
3 |signalOut complex

Notes/Equations

1. LMS_Cx implements an adaptive filter using the least-mean square algorithm. The
initial filter coefficients are given by the Taps parameter. The default initial
coefficients give an 8th-order, linear phase lowpass filter. To read initial coefficients
from a file, replace the default coefficients with <filename>, preferably specifying a
complete path. For details on using arrays of data for parameter values, refer to
Understanding Parameters (ptolemy) in the ADS Ptolemy Simulation (ptolemy)
documentation.

593



Advanced Design System 2011.01 - Numeric Components
LMS_Cx supports decimation, but not interpolation.

2. For details on complex parameter values, refer to Complex-Valued Parameters
(ptolemy) in the ADS Ptolemy Simulation (ptolemy) documentation.

For details on using complex arrays of data, refer to Value Types (ptolemy) in the
ADS Ptolemy Simulation (ptolemy) documentation.

3. When used correctly, this LMS adaptive filter will adapt to try to minimize the mean-
squared error of the signal at its error input [1]. The output of the filter should be
compared (subtracted from) some reference signal to produce an error signal. That
error signal should be fed back to the error input. The ErrorDelay parameter must
equal the total number of delays in the path from the output of the filter back to the
error input. This ensures correct alignment of the adaptation algorithm. The number
of delays must be greater than 0 or the simulation will deadlock.

The adaptation algorithm is the well-known LMS, or stochastic-gradient algorithm.

4, If the SaveTapsFile string is non-null, a file will be created with the name given by

that string, and the final tap values will be stored there after the run has completed.

See also: LMS (numeric), LMS_Leak (numeric), LMS_OscDet (numeric).

For general information regarding numeric signal processing component signals, refer

to Numeric Signal Processing Components (numeric).

o u

References

1. S. Haykin, Adaptive Filter Theory, Prentice Hall: Englewood Cliffs, NJ. 1991. 2nd ed.

594



LMS_Leak

-

b A 4

Advanced Design System 2011.01 - Numeric Components

Description: LMS Adaptive Filter with Input Step Size
Library: Numeric, Signhal Processing

Class: SDFLMS_Leak

C++ Code: See doc/sp_items/SDFLMS__Leak.htm/ under your installation directory.

Parameters
Name Description Default Unit Type
Taps filter tap values -.040609 -.001628 .17853 .37665 real
.37665 .17853 -.001628 -.040609 array
Decimation decimation ratio int
DecimationPhase decimation phase int
ErrorDelay update loop delay 1 int
SaveTapsFile filename in which to save string

final tap values

Mu coefficient update leak 0.0
factor
Pin Inputs
Pin [Name |Description Signal Type

1 |signalln
2 |error
3 |step
Pin Outputs

Pin Name Description |Sig

4  |signalOut real

Notes/Equations

real
real

Step-size for LMS algorithm. |real

nal Type

real

Range

[1, o)

(0,
Decimation-1]

[1, o)

(00, )

1. LMS_Leak is an LMS adaptive filter in which the step size is input (to the step input)
every iteration. In addition, the Mu parameter specifies a leakage factor in the
updates of the filter coefficients.

2. If two identical LMS_Leak filters are used as an adaptive predictive coder and
decoder then, with Mu nearly equal to but greater than 0.0, the effects of channel
errors between the coder and decoder will decay rather than accumulate. As Mu
increases, the effects of channel errors decay more quickly, but the size of the error
input increases also. See page 54 of Reference [1].

3. ErrorDelay must equal the total number of delays in the path from the output of the
filter back to the error input. This ensures correct alignment of the adaptation

595



Advanced Design System 2011.01 - Numeric Components
algorithm. The number of delays must be >0 or the simulation will deadlock.
4. If the SaveTapeFile string is non-null, a file will be created with the name given by
that string, and the final tape values will be stored there after the run has completed.
5. See also: LMS (numeric), LMS_Cx (numeric), LMS_QOscDet (numeric).
6. For general information regarding numeric signal processing component signals, refer
to Numeric Signal Processing Components (numeric).

References

1. W. Honig and D. G. Messerschmitt, Adaptive Filters, Kluwer Academic Publishers,
Norwood MA, 1985.

596



Advanced Design System 2011.01 - Numeric Components

LMS_OscDet

P P B
il _AN<

Description: LMS adaptive filter with sinusoid detection
Library: Numeric, Signhal Processing
Class: SDFLMS_OscDet

C++ Code

Parameters

Name Description Default Unit Type |lRange
StepSize adaptation step size 0.01 real |(0, o)
ErrorDelay |update loop delay 1 int [1, )
SaveTapsFile [filename in which to save final tap values string
InitialOmega |initial estimated angle, in radians pi/4 real |(-co, o)
Pin Inputs

Pin Name |Description Signal Type

1 |signalln real

2 lerror real

Pin Outputs

Pin Name Description Signal
Type

3 |signalOut real

4  |cosOmega Current estimated value of the cosine of the frequency of the real

dominate\nsinusoidal component of the input signal.

Notes/Equations

1. LMS_OscDet tries to lock onto the strongest sinusoidal component in the input signal,
and outputs the current estimate of the cosine of the frequency of the strongest
component. LMS_OscDet is a 3-tap least-mean square filter whose first and third
coefficients are fixed while the second coefficient is adapted. It is a normalized
version of the Direct Adaptive Frequency Estimation Technique.

2. The initial taps of this LMS filter are 0.5, —1, 0.5. The second tap is adapted while the
others are held fixed. The second tap is equal to — a , ; its adaptation has the form

yln] = %x[n] —a[k]x[n - 1]+ %x[n -2]

where

a[k] = a [k - 1]+ 4pe[rn]x[r -1]

and y[n] is the output of this filter, which can be used as the error signal.
597



Advanced Design System 2011.01 - Numeric Components

The step size term p is fixed by the value of the StepSize parameter. You can
effectively vary the step size by attenuating the error term as

_ yln]
eln] = %5
assuming that k = 1, 2, 3, and so forth. When the error becomes relatively small,
this filter gives an estimate of the strongest sinusoidal component:
a; = cos(®)

The taps here are scaled by one-half from those of other implementations; therefore,
the output of the filter is also scaled by one-half. To compensate for this scaling, p is
multiplied by 2 relative to other implementations with full scale taps.

. LMS_OscDet outputs the current value of a; on the cosOmega output port. The initial

value is a; = 1 (0 frequency) so the initial value of the second tap is —1.

. ErrorDelay must equal the total number of delays in the path from the output of the
filter back to the error input. This ensures correct alignment of the adaptation
algorithm. The number of delays must be >0 or the simulation will deadlock.

. If the SaveTapeFile string is non-null, a file will be created with the name given by
that string, and the final tape values will be stored there after the run has completed.
. See also: LMS (numeric), LMS_Cx (numeric), and LMS_Leak (numeric).

. For general information regarding numeric signal processing component signals, refer
to Numeric Signal Processing Components (numeric).

598



Advanced Design System 2011.01 - Numeric Components

PattMatch
2 4
1_r | f"J".:". \ [

Description: Cross-correlation with template input

Library: Numeric, Signhal Processing

Class: SDFPattMatch

C++ Code: See doc/sp_items/SDFPattMatch.html under your installation directory.

Parameters

Name Description Default |Unit Type Range
TempSize |number of samples in template 32 int (0, )
WinSize |number of samples in search template |[176 int [TempSize, «)
Pin Inputs

Pin Name Description |Signal Type
1 |templ [template input |real
2 |window |window input |real

Pin Outputs
Pin [Name |Description Signal Type
3 |index |index output int

4 |values |cross-correlation output real

Notes/Equations

1. PattMatch accepts a template and a search window and tries to find the position in
the search window where the template matches best. Every time the component
fires, it reads TempSize samples from its templ input and WinSize samples from its
window input. At the same time, it writes one sample to its index output and
(WinSize — TempSize + 1) samples to its values output.

The algorithm for finding the best template match position starts by placing the
template at the left end of the window (first samples of template and window are
aligned) and calculating the cross-correlation between them. Then the template is
shifted across the window one sample at a time and the cross-correlation is
computed at each step until the template reaches the right end of the window (last
samples of template and window are aligned). The cross-correlation values are
output on the values output. The index output is the value of the shift (in number of
samples) that gives the largest cross-correlation.

2. The cross-correlation values are normalized against the energy of the window under
the template:

599



Advanced Design System 2011.01 - Numeric Components
T".":c -1

Z T(m)W(m+n)

C(n) = T_’”_j”

SLIC

Z Wim+n)W(im+n)

m=10

where T is the template, W is the window, n is the index value and T equals

size
TempSize.

Note that if the template is identical to a certain segment of the window, then the
cross-correlation value C(n) for that segment will be 1.0. Therefore, the index with
the highest cross-correlation value may not be the best match if that value is greater
than 1.0.

. For general information regarding numeric signal processing component signals, refer
to Numeric Signal Processing Components (numeric).

. To access the example that shows how this component is used: from the Main
window, choose File > Open > Example > PtolemyDocExamples >
Numeric_Signal_Processing_wrk; from the Schematic window, choose File >
Open, PattMatch_example.

600



Advanced Design System 2011.01 - Numeric Components

RLattice

1 . i¥i .2
w‘\

Description: Recursive Lattice Filter

Library: Numeric, Signhal Processing

Class: SDFRLattice

C++ Code: See doc/sp_items/SDFRLattice.htm/ under your installation directory.

Parameters
Name Description Default Unit Type Range
ReflectionCoefs |reflection or PARCOR 0.804534 -0.820577 0.521934 - real
coefficients 0.205 array
Pin Inputs

Pin [Name |Description Signal Type
1 |signalln real
Pin Outputs

Pin Name Description |Signal Type
2 |signalOut real

Notes/Equations

1. RLattice implements a recursive lattice filter (also referred to as the Lattice inverse
filter). The structure of this filter is:

RLattice Filter Structure

Enl—

= unit delays

& -adders

where Z ! are unit delays and + are adders. The reflection (or PARCOR) coefficients
should be entered from K, to K _, left to right, where K ; through K _ are specified

as above.
601



Advanced Design System 2011.01 - Numeric Components
2. Using the same coefficients in the Lattice component will result in the inverse transfer
function.
3. The default reflection coefficients correspond to the optimal linear predictor for an AR
process generated by filtering white noise with the following filter:
1

H(z) =

1 ) ) i
1-2z "+191z " -091z ~+0.205=

4. To read other reflection coefficients from a file, replace the default coefficients with
<filename>. Use the full path of the filename so that the simulation will work
correctly without regard to the directory from which it runs. For details on using
arrays of data for parameter values, refer to Understanding Parameters (ptolemy) in
the ADS Ptolemy Simulation (ptolemy) documentation.

5. The definition of reflection coefficients varies in the literature. The reflection
coefficients in References [2] and [3] are the negative of the ones used by RLattice,
which correspond to the definition in most other texts, and to the definition of partial-
correlation (PARCOR) coefficients in the statistics literature.

The signs of the coefficients used in RLattice are appropriate for values given by the
LevDur and Burg components.

6. See also: BlockLattice (numeric), BlockRLattice (numeric), IIR (numeric), Lattice
(numeric).

7. For general information regarding numeric signal processing component signals, refer
to Numeric Signal Processing Components (numeric).

References

1. J. Makhoul, "Linear Prediction: A Tutorial Review," Proc. IEEE, Vol. 63, pp. 561-580,
Apr. 1975.

2. S. M. Kay, Modern Spectral Estimation: Theory & Application, Prentice-Hall,
Englewood Cliffs, NJ, 1988.

3. S. Haykin, Modern Filters, MacMillan Publishing Company, New York, 1989.

602



Advanced Design System 2011.01 - Numeric Components

SlidWinAvg
Ly [P

Description: Sliding-Window Average

Library: Numeric, Signhal Processing

Class: SDFSIlidWinAvg

C++ Code: See doc/sp_items/SDFSIlidWinAvg.html under your installation directory.

Parameters

Name Description Default Unit Type Range
WindowsSize |size of sliding window |3 int (1, o)
Pin Inputs

Pin [Name |Description Signal Type
1 Jinput |input signal |real
Pin Outputs

Pin [Name Description Signal Type
2 |output |output signal |real

Notes/Equations

1. SlidWinAvg outputs the average of the last WindowSize input values.
For the first (WindowSize —1) output samples for which less than WindowSize input
samples are available, the missing values are assumed to be 0.
This component is equivalent to an FIR filter with WidowSize taps all equal to
1/WindowsSize.

603



Advanced Design System 2011.01 - Numeric Components

Numeric Sources

Bits (numeric)
ComplexExp (numeric)
Const (numeric)
ConstCx (numeric)
ConstFix (numeric)
ConstInt (numeric)

Cx M (numeric)
DataPattern (numeric)
DiagonalCx M (numeric)
DiagonalFix M (numeric)
DiagonalInt M (numeric)
Diagonal M (numeric)
Fix M (numeric)

Float M (numeric)
IdentityCx M (numeric)
IdentityFix M (numeric)
IdentityInt M (numeric)
Identity M (numeric)

IID Gaussian (numeric)
IID Uniform (numeric)
ImpulseFloat (numeric)
Int M (numeric)
NumericExpression (numeric)
NumericSource (numeric)
RampFix (numeric)
RampFloat (numeric)
RamplInt (numeric)
ReadFile (numeric)
ReadFilePreProc (numeric)
Rect (numeric)

RectCx (numeric)
RectCxDoppler (numeric)
RectFix (numeric)
SineGen (numeric)
WaveForm (numeric)
WaveFormCx (numeric)
Window (numeric)

The Numeric Sources component library contains scalar and matrix signal sources for
floating-point (real), fixed-point, complex and integer data.

Some components accept parameter values that are arrays of data. The syntax for
referencing arrays of data as parameter values includes an explicit list of values, a
reference to a file that contains those values, or a combination of explicit values along
with file references. For details on using arrays of data for parameter values, refer to
Understanding Parameters (ptolemy) in the ADS Ptolemy Simulation (ptolemy)
documentation.

Some components operate with fixed-point numbers. These components use one or more

604



Advanced Design System 2011.01 - Numeric Components
parameters that define the characteristics of the fixed-point processing. These parameters
include: OverflowHandler, OutputPrecision, RoundFix, ReportOverflow, and others. For
details on the use of these parameters for fixed-point components a refer to Parameters
for Fixed-Point Components (ptolemy) in the ADS Ptolemy Simulation (ptolemy)
documentation. The arithmetic used by these components is two's complement.
Therefore, all precision values must specify at least one bit to the left of the decimal point

(used as sign bit).

605



Advanced Design System 2011.01 - Numeric Components

Bits
2N
f 1
N4

Description: Binary random bits output
Library: Numeric, Sources
Class: SDFBits

Parameters

Name Description Default Symbol Unit Type Range

Type type of bit sequence, random or pseudo random: Random enum
Random, Prbs

ProbOfZero probability of bit value being zero (used when 0.5 real [0, 1]
Type=Random)

LFSR_Length |Linear Feedback Shift Register length (used when 12 L int [2, 31]
Type=Prbs)

LFSR_InitState |Linear Feedback Shift Register initial state (used 1 int [1,2L-
when Type=Prbs) 1]

Pin Outputs

Pin [Name |Description Signal Type

1  |output output bit stream |int

Notes/Equations

© Note
Due to a corrective change made to this component in the ADS 2008 release, its output bit sequence in
ADS 2008 (and later releases) differs from the one generated in previous releases when Type=Prbs. In

ADS 2008 (and later releases) the first output bit (in the period of 2- — 1 bits) is what used to be the last
output bit (in the period of 2L — 1 bits) in releases prior to ADS 2008.

1. Bits generates random or pseudo-random binary bit sequences.

2. When Type = Random, Bits generates a random output bit sequence for which the
probability of each bit being 0 is equal to ProbOfZero. If ProbOfZero is set to a value
less than 0 it is considered to be equal to 0; if ProbOfZero is set to a value greater
than 1 it is considered to be equal to 1.

(The LFSR_Length and LFSR_InitState parameters are ignored in this mode.)

The random bit sequence is generated by making use of the random number
generator. Therefore, the bit pattern will be different for each instance of the Bits
component. In addition, if other components that use the random number generator
(for example, Noise, IID_Gaussian, RES with RTemp > —273.15) are added or
removed from a design the output bit sequences from the Bits components will
change.

The output bit sequence is also dependent on the value of the DefaultSeed parameter

606



Advanced Design System 2011.01 - Numeric Components
in the data flow controller (DF), which provides the initial seed for the random
number generator.

« When DefaultSeed = 0, the initial seed value is obtained from the system time
so the output bit sequence generated for each simulation will be different even if
nothing else changes on the design.

« When DefaultSeed > 0, the output bit sequence generated for each simulation,
though statistically random, has the same initial seed starting condition and
therefore results in reproducible simulations.

. When Type = Prbs, the output bit sequence is pseudo-random and is generated by
using an LFSR (linear feedback shift register).
The LFSR_Length parameter sets the LFSR length that, in turn, defines the period of

the sequence (2- — 1). If LFSR_Length is outside its valid range [2, 31], it is reset to
its default value of 12.
The LFSR_InitState parameter sets the initial state of the LFSR. If LFSR_InitState is

outside its valid range [1, 2L — 1], it is reset to its default value of 1. The ProbOfZero
parameter is ignored in this mode of operation. Since the random number generator
is not used in this case, the output bit sequence does not depend on the DefaultSeed
parameter of the DF controller.

Two instances of the Bits source with Type set to Prbs and the same values for the
LFSR_Length and LFSR_InitState parameters will generate the exact same output no
matter what the DefaultSeed value is or if the rest of the design is modified.

To get two or more uncorrelated pseudo-random bit sequences, place two or more
Bits components, set their Type parameters to Prbs, their LFSR_Length parameters
to the same value, and their LFSR_InitState parameters to different values. The
maximum number of uncorrelated sequences one can generate with LFSRs of length
Lis 2- - 1.

. See also: LFSR (numeric).

. For information regarding numeric source signals, refer to Numeric Sources
(numeric).

607



Advanced Design System 2011.01 - Numeric Components

ComplexExp

Yy : 1

Description: Complex exponential source
Library: Numeric, Sources

Class: SDFComplexExp

Derived From: SineGen

Parameters
Name Description Default Unit Type Range
RadiansPerSample |radians per sample pi/50 real |(-o0, c0)
InitialRadians initial phase, in radians |0 real |(-co0, c0)
Pin Outputs

Pin [Name Description Signal Type
1 |output joutput signal ,complex

Notes/Equations

1. ComplexExp generates the sequence of humbers given by
cos(wxn+@)+jxsinflwxn+¢)n=01,..,
where w equals RadiansPerSample and ¢ equals InitialRadians.

2. For information regarding numeric source signals, refer to Numeric Sources
(numeric).

608



Advanced Design System 2011.01 - Numeric Components

‘\[
ons t —bv

Description: Constant output
Library: Numeric, Sources
Class: SDFConst

C++ Code: See doc/sp_items/SDFConst.html under your installation directory.

Parameters

Name Description Default Unit Type Range
Level |value 0.0 real |(-co, o)
Pin Outputs

Pin [Name Description [Signal Type
1 |output real

Notes/Equations

1. Const outputs a constant signal with a value given by the Level parameter (default
0.0).

2. For information regarding numeric source signals, refer to Numeric Sources
(numeric).

609



Advanced Design System 2011.01 - Numeric Components

ConstCx
7N
i = 1 \ 1
.

Description: Complex constant output

Library: Numeric, Sources

Class: SDFConstCx

C++ Code: See doc/sp_items/SDFConstCx.html under your installation directory.

Parameters

Name Description |Default Unit Type Range

Real |real part 0.0 real [(-o0, 00)
Imag |imaginary part|0.0 real |(-o0, o)
Pin Outputs

Pin [Name Description [Signal Type
1 Joutput complex

Notes/Equations

1. ConstCx outputs a complex constant signal with the real part given by the Real
parameter (default 0.0) and the imaginary part given by the Imag parameter (default
0.0).

2. For information regarding numeric source signals, refer to Numeric Sources
(numeric).

610



Advanced Design System 2011.01 - Numeric Components

ConstFix

h’1

Description: Fixed-Point Constant Output

Library: Numeric, Sources

Class: SDFConstFix

Derived From: SDFFix

C++ Code: See doc/sp_items/SDFConstFix.htm/ under your installation directory.

Parameters

Name Description Default Type Range

OverflowHandler |output overflow characteristic: wrapped, saturate, wrapped |enum
zero_saturate, warning

ReportOverflow |simulation overflow error report option: DONT_REPORT, REPORT |enum
REPORT

RoundFix fixed-point computations, assignments, and data type TRUNCATE enum
conversions option: TRUNCATE, ROUND

Level constant value 0.0 fix (-co,

)
OutputPrecision |precision of output in bits and accumulation 2.14 precision
Pin Outputs

Pin Name Description |Signal Type
1 |output fix

Notes/Equations

1. ConstFix outputs a fixed-point constant signal with a value given by the Level
parameter (default 0.0).

2. The output precision is specified using an /.r format: / is the number of bits to the left
of the decimal place (including the sign bit); r is the number of bits to the right of the
decimal place. For example, the precision 2.22 would represent a 24-bit fixed-point
number with 1 sign bit, 1 integer bit, and 22 fractional bits.

3. This component uses two's-complement arithmetic; the values of the OutputPrecision
parameter given by the designer must specify at least 1 bit to the left of the decimal
place (used a sign bit).

4. For information regarding numeric source signals, refer to Numeric Sources
(numeric).

611



Advanced Design System 2011.01 - Numeric Components

Constint
Y

Description: Integer constant output

Library: Numeric, Sources

Class: SDFConstInt

C++ Code: See doc/sp_items/SDFConstint.htm/ under your installation directory.

Parameters

Name Description |Default Unit Type Range
Level |constant value |0 int |(-o0, 00)
Pin Outputs

Pin [Name Description [Signal Type
1 |output int

Notes/Equations

1. ConstInt outputs a constant signal with a value given by the Level parameter (default
0).

2. For information regarding numeric source signals, refer to Numeric Sources
(numeric).

612



Advanced Design System 2011.01 - Numeric Components

Cx_ M

T

sEm

NN
(EE

Description: Complex Matrix Output
Library: Numeric, Sources

Class: SDFCx_M

Derived From: MatrixConstant

Parameters
Name Description Default Type Range
NumRows the number of rows in the matrix 2 int [1, o)
NumcCols the number of columns in the matrix 2 int [1, c0)
ComplexMatrixContents complex valued elements of output matrix |1 j (-1) (- |complex array

i)
Pin Outputs

Pin Name Description |Signal Type
1 |output complex matrix

Notes/Equations

1. Cx_M produces a matrix with complex entries. Entries are read from the
ComplexMatrixContents array parameter in rasterized order; for example, for an
M x N matrix, the first row is filled from left to right using the first N values from the
array.
The ComplexMatrixContents value may be specified directly or these may be read
from a file. To use data from a file, replace the default coefficients with the string,
<filename.

2. For details on complex parameter values, refer to Complex-Valued Parameters
(ptolemy) in the ADS Ptolemy Simulation (ptolemy) documentation.
Value Types (ptolemy) in the ADS Ptolemy Simulation (ptolemy) documentation.

3. For information regarding numeric source signals, refer to Numeric Sources
(numeric).

613



Advanced Design System 2011.01 - Numeric Components

DataPattern
2N
I\\ /

Description: Patterned data source
Library: Numeric, Sources
Class: SDFDataPattern

Parameters

Name Description Default Unit Type Range

DataPattern data pattern: PN9, PN15, FIX4, _4 1 4.0, 8.1 8.0, _16_1_16_0, PN9 enum
~32.1.32.0,_64.1.64_0

Pin Outputs

Pin [Name Description Signal Type

1 |output patterned data output |int

Notes/Equations

1. This model is used to generate one of eight patterned bit streams.
2. For the DataPattern parameter:
o if PN9 is selected, a 511-bit pseudo-random test pattern is generated according
to CCITT Recommendation O.153
« if PN15 is selected, a 32767-bit pseudo-random test pattern is generated
according to CCITT Recommendation 0.151
« if FIX4 is selected, a zero-stream is generated
e if x_1_x_0 is selected, where x equals 4, 8, 16, 32, or 64, a periodic bit stream
is generated, with the period being 2 x x. In one period, the first x bits are 1s
and the second x bits are 0s.

3. For information regarding numeric source signals, refer to the Numeric Sources
(numeric).

References

1. CCITT, Recommendation 0.151(10/92).
2. CCITT, Recommendation 0.153(10/92).

614



Advanced Design System 2011.01 - Numeric Components

DiagonalCx_M

Description: Complex Diagonal Matrix Output
Library: Numeric, Sources

Class: SDFDiagonalCx_M

Derived From: MatrixBase

Parameters

Name Description Default Type Range
RowsCols number of rows and columns in output square matrix |2 int [1, o0)
DiagonalElements |complex diagonal elements of output matrix 1] complex array

Pin Outputs

Pin [Name Description [Signal Type
1 |output complex matrix

Notes/Equations

1. DiagonalCx_M outputs a diagonal matrix of size (RowsCols x RowsCols) with the

diagonal elements given in the DiagonalElements parameter. All diagonal elements
are complex numbers.

2. For information regarding numeric source signals, refer to Numeric Sources
(numeric).

615



Advanced Design System 2011.01 - Numeric Components

DiagonalFix_M

=

Description: Fixed-Point Diagonal Matrix Output
Library: Numeric, Sources

Class: SDFDiagonalFix_M

Derived From: SDFFix

Parameters
Name Description Default Type Range
OverflowHandler |output overflow characteristic: wrapped, saturate, wrapped |enum
zero_saturate, warning
ReportOverflow |simulation overflow error report option: DONT_REPORT, REPORT |enum
REPORT
RoundFix fixed-point computations, assignments, and data type TRUNCATE enum
conversions option: TRUNCATE, ROUND
RowsCols number of rows and columns in output square matrix 2 int [1, o)
OutputPrecision |precision of output in bits and accumulation 2.14 string
DiagonalElements (fixed-point diagonal elements of output matrix 1-2 fix
array
Pin Outputs

Pin Name Description |Signal Type
1 |output fix matrix

Notes/Equations

1. DiagonalFix_M outputs a diagonal matrix of size (RowsCols x RowsCols) with the
diagonal elements given in the DiagonalElements parameter with the specified
precision.

2. This component uses two's-complement arithmetic; the values of the OutputPrecision
parameter given by the designer must specify at least 1 bit to the left of the decimal
place (used as sign bit).

3. For information regarding numeric source signals, refer to Numeric Sources
(numeric).

616



Advanced Design System 2011.01 - Numeric Components

DiagonalInt_M

Description: Integer Diagonal Matrix Output
Library: Numeric, Sources

Class: SDFDiagonallnt_M

Derived From: MatrixBase

Parameters
Name Description Default Type Range
RowsCols number of rows and columns in output square matrix |2 int [1, )
DiagonalElements |integer diagonal elements of output matrix 12 int

array
Pin Outputs

Pin Name Description |Signal Type
1 |output int matrix

Notes/Equations

1. Diagonallnt_M outputs a diagonal matrix of size (RowsCols x RowsCols) with the

diagonal elements given in the DiagonalElements parameter. All diagonal elements
are integer numbers.

2. For information regarding numeric source signals, refer to Numeric Sources
(numeric).

617



Advanced Design System 2011.01 - Numeric Components

Diagonal_M

Description: Diagonal Matrix Output
Library: Numeric, Sources

Class: SDFDiagonal_M

Derived From: MatrixBase

Parameters
Name Description Default Type Range
RowsCols number of rows and columns in output square matrix |2 int [1, )
DiagonalElements diagonal elements of output matrix 1.0 2.0 |real

array
Pin Outputs

Pin Name Description |Signal Type
1 |output real matrix

Notes/Equations

1. Diagonal_M outputs a diagonal matrix of size (RowsCols x RowsCols) with the
diagonal elements given in the DiagonalElements parameter. All diagonal elements
are floating-point (real) numbers.

2. For information regarding numeric source signals, refer to Numeric Sources
(numeric).

618



Fix_ M

_...1

T

sEm

EEE
(EE

Description: Fixed-Point Matrix Output
Library: Numeric, Sources

Class: SDFFix M
Derived From: SDFFix

Advanced Design System 2011.01 - Numeric Components

Parameters
Name Description Default Type Range
OverflowHandler |output overflow characteristic: wrapped, saturate, wrapped |enum
zero_saturate, warning
ReportOverflow |simulation overflow error report option: DONT_REPORT, REPORT |enum
REPORT
RoundFix fixed-point computations, assignments, and data type TRUNCATE enum
conversions option: TRUNCATE, ROUND
NumRows number of rows in output matrix 2 int [1, )
NumCols number of columns in output matrix 2 int [1, o)
FixMatrixContents (fixed-point elements of output matrix 1-22-2 (fixarray
OutputPrecision |precision of output in bits and accumulation 2.14 precision
Pin Outputs

Pin [Name Description [Signal Type

1

output fix matrix

Notes/Equations

1.

2.

3.

Fix_M generates a matrix with fixed-point entries. Entries are read from the
FixMatrixContents array parameter in rasterized order; for example, foran M x N
matrix, the first row is filled left to right using the first N values from the array. All
entries have the same precision, as specified by OutputPrecision.

The FixMatrixContents value may be specified directly or these may be read from a
file. To use data from a file, replace the default coefficients with the string, <filename
. For details on using arrays of data for parameter values, refer to Understanding
Parameters (ptolemy) in the ADS Ptolemy Simulation (ptolemy) documentation.

This component uses two's-complement arithmetic; the values of the OutputPrecision
parameter given by the designer must specify at least 1 bit to the left of the decimal
place (used a sign bit).

For information regarding numeric source signals, refer to Numeric Sources
(numeric).

619



Advanced Design System 2011.01 - Numeric Components

Float_ M

—p!

T

sEm

EEE
(EE,

Description: Matrix Output
Library: Numeric, Sources
Class: SDFFloat_M

Derived From: MatrixConstant

Parameters

Name Description Default Type

NumRows the number of rows in the matrix 2 int

NumcCols the number of columns in the matrix |2 int

FloatMatrixContents (floating-point(real) elements of matrix /1.0 -2.0 2.0 -2.0 |real
array

Pin Outputs

Pin Name Description |Signal Type
1 |output real matrix

Notes/Equations

Range
[1, =)
[1, =)

1. Float_M produces a matrix with floating-point (real) entries. Entries are read from the
FloatMatrixContents array parameter in rasterized order; for example, foran M x N
matrix, the first row is filled from left to right using the first N values from the array.

2. The FloatMatrixContents value may be specified directly or these may be read from a
file. To use data from a file, replace the default coefficients with the string, <filename
. For details on using arrays of data for parameter values, refer to Understanding
Parameters (ptolemy) in the ADS Ptolemy Simulation (ptolemy) documentation.

3. For information regarding numeric source signals, refer to Numeric Sources

(numeric).

620



Advanced Design System 2011.01 - Numeric Components

IdentityCx_M

Description: Complex Identity Matrix Output
Library: Numeric, Sources

Class: SDFIdentityCx_M

Derived From: MatrixBase

Parameters

Name Description Default Type Range

RowsCols |number of rows and columns in output square matrix |2 int [1, )
Pin Outputs

Pin Name Description |Signal Type
1 |output complex matrix

Notes/Equations
1. IdentityCx_M outputs an identity matrix of the specified size.

2. For information regarding numeric source signals, refer to Numeric Sources
(numeric).

621



Advanced Design System 2011.01 - Numeric Components

IdentityFix_M

0 '

|
s o

Description: Fixed-Point Identity Matrix Output
Library: Numeric, Sources

Class: SDFIdentityFix_M

Derived From: SDFFix

Parameters
Name Description Default Type Range
OverflowHandler |output overflow characteristic: wrapped, saturate, zero_saturate, wrapped enum
warning
ReportOverflow |simulation overflow error report option: DONT_REPORT, REPORT |REPORT |enum
RoundFix fixed-point computations, assignments, and data type conversions TRUNCATE |enum
option: TRUNCATE, ROUND
RowsCols number of rows and columns in output square matrix 2 int [1, )
OutputPrecision |precision of output in bits and accumulation 2.14 string
Pin Outputs

Pin Name Description |Signal Type
1 |output fix matrix

Notes/Equations

1. IdentityFix_M outputs an identity matrix of the specified size with the specified
precision.

2. This component uses two's-complement arithmetic; the values of the OutputPrecision
parameter given by the designer must specify at least 1 bit to the left of the decimal
place (used a sign bit).

3. For information regarding numeric source signals, refer to Numeric Sources
(numeric).

622



Advanced Design System 2011.01 - Numeric Components

IdentityInt_M

Description: Integer Identity Matrix Output
Library: Numeric, Sources

Class: SDFIdentityInt_M

Derived From: MatrixBase

Parameters

Name Description Default Type Range

RowsCols jnumber of rows and columns in output square matrix |2 int [1, )
Pin Outputs

Pin [Name Description [Signal Type
1 |output int matrix

Notes/Equations

1. IdentityInt_M outputs an identity matrix of the specified size.

623



Advanced Design System 2011.01 - Numeric Components

Identity_M

Description: Identity Matrix Output
Library: Numeric, Sources

Class: SDFIdentity_M

Derived From: MatrixBase

Parameters

Name Description Default Type Range

RowsCols |number of rows and columns in output square matrix |2 int [1, )
Pin Outputs

Pin [Name Description [Signal Type
1 |output real matrix

Notes/Equations
1. Identity_M outputs an identity matrix of the specified size.

2. For information regarding numeric source signals, refer to Numeric Sources
(numeric).

624



Advanced Design System 2011.01 - Numeric Components

IID Gaussian

| \‘f—h*

Description: IID Gaussian Distributed Noise Output

Library: Numeric, Sources

Class: SDFIID_Gaussian

C++ Code: See doc/sp_items/SDFIID Gaussian.htm/ under your installation directory.

Parameters
Name |Description Default Unit Type Range
Mean mean of distribution  |0.0 real |(-o0, )
Variance |variance of distribution |1.0 real |(-oo, o)
Pin Outputs

Pin [Name Description [Signal Type
1 |output real

Notes/Equations

1. IID_Gaussian generates an identically independently distributed white Gaussian
pseudo-random process with mean (default 0) and variance (default 1) specified by
the Mean and Variance parameters.

2. The noise is random for each IID_Gaussian instance. The noise is dependent on the
value of the DefaultSeed in the data flow controller (DF). When DefaultSeed = 0, the
noise generated for each simulation is different. When DefaultSeed > 0, the noise
generated for each simulation, though random, has the same initial seed starting
condition and thus results in reproducible simulations.

3. For information regarding numeric source signals, refer to Numeric Sources
(numeric).

625



Advanced Design System 2011.01 - Numeric Components

IID Uniform

/I }._ ?r\n \ 1
i ],f'i b"’n\dl IIN 'ff: —
N/

Description: IID Uniform Distributed Noise Output

Library: Numeric, Sources

Class: SDFIID_Uniform

C++ Code: See doc/sp_items/SDFIID Uniform.htm/ under your installation directory.

Parameters

Name Description Default Unit Type Range

Lower |lower limit |0.0 real |(-oo0, o)
Upper |upper limit 1.0 real |[Lower, o)
Pin Outputs

Pin [Name Description [Signal Type
1 |output real

Notes/Equations

1. IID_Uniform generates an identically independently distributed uniformly distributed
pseudo-random process. The output is uniformly distributed between Lower (default
0.0) and Upper (default 1.0) limits.

2. Noise is random for each IID_Uniform instance and is dependent on the value of the
DefaultSeed in the data flow controller (DF). When DefaultSeed = 0, then the noise
generated for each simulation is different; when DefaultSeed > 0, then the noise
generated for each simulation, though random, has the same initial seed starting
condition and thus results in reproducible simulations.

3. For information regarding numeric source signals, refer to Numeric Sources
(numeric).

626



Advanced Design System 2011.01 - Numeric Components

ImpulseFloat

e

J_, !

Description: Impulse output

Library: Numeric, Sources

Class: SDFImpulseFloat

C++ Code: See doc/sp_items/SDFImpulseFloat.html under your installation directory.

Parameters

Name Description Default Unit Type Range
Level |height of impulse 1.0 real |(-o0, o)
Period |if greater than zero, period of impulse train |0 int [0, o0)
Delay |output delay 0 int [0, o0)
Pin Outputs

Pin [Name Description [Signal Type
1 |output real

Notes/Equations

1. ImpulseFloat generates a single impulse or an impulse train, with an amplitude
specified by Level (default 0.0). If Period (default 0) is equal to 0, then only a single
impulse is generated; otherwise Period specifies the period of the impulse train. The
impulse or impulse train is delayed by the amount specified by Delay.

2. For information regarding numeric source signals, refer to Numeric Sources
(numeric).

627



Advanced Design System 2011.01 - Numeric Components

Int M

EEE

s

N
(EE

Description: Integer Matrix Output
Library: Numeric, Sources

Class: SDFInt_M

Derived From: MatrixConstant

Parameters

Name Description

NumRows the number of rows in the matrix
NumCols the number of columns in the

matrix
IntMatrixContents |integer elements of output matrix

Pin Outputs

Pin [Name Description [Signal Type
1 |output int matrix

Notes/Equations

Default |Type

int

int

int
array

Range
[1, =)
[1, )

1. Int_M produces a matrix with integer entries. Entries are read from the
IntMatrixContents array parameter in rasterized order; for example, foran M x N
matrix, the first row is filled from left to right using the first N values from the array.

2. The IntMatrixContents value may be specified directly or these may be read from a
file. To use data from a file, replace the default coefficients with the string, <filename
. For details on using arrays of data for parameter values, refer to Understanding
Parameters (ptolemy) in the ADS Ptolemy Simulation (ptolemy) documentation.

3. For information regarding numeric source signals, refer to Numeric Sources

(numeric).

628



Advanced Design System 2011.01 - Numeric Components

NumericExpression

f(Nsample)

Description: Numeric Expression Data output
Library: Numeric, Sources
Class: SDFNumericExpression

Parameters

Name Description Default Type

Expression |expression, which can be function of "Nsample" |0.0+j*0.0 |complex
Pin Outputs

Pin Name Description Signal Type
1 |output numeric source output complex
signal

Notes/Equations

1. This component is used to generate numeric data output evaluated using an
expression. Expression can be any valid expression, following the syntax used for

writing expression on a VAR block.

If the Expression is dependent on predefined variable, Nsample, then the output will
be dependent on the sample number, which is incremented for each firing of this

component determined by the schedule.

2. For information regarding numeric source signals, refer to Numeric Sources

(numeric).

629



Advanced Design System 2011.01 - Numeric Components

NumericSource

= |—p

Description: Numeric signal generator using dataset
Library: Numeric, Sources
Class: SDFNumericSource

Parameters
Name Description Default Type Range
ControlSimulation |if set to YES, Period ( or if Period=0 then the index of last data |NO enum
sample in the file) determines how long the simulation will run:
NO, YES
Periodic if YES then output is periodic: NO, YES YES enum
Period period of the output waveform if Periodic=YES. If Period=0 then |0 int [0, c0)
period is the index of the last data sample read
DataSet dataSet file to construct Expression from filename
Expression variable/sink name from dataset or a valid dataSet expression ( string
data can be multi dimensional from 1-D to 3-D )
Pin Outputs
Pin [Name Description Signal Type

1 |output Numeric source output signal |anytype

Notes/Equations

1. This component is used to generate numeric data output evaluated using a pre-
generated dataset. Expression can be any valid expression using variables available
in the dataset. The syntax used for writing expression is the same as writing an
expression to display the data in a Data Display window.

If the dataset was generated using a Sweep, and the expression results in
multidimensional data, the output will be matrix data. The expression must evaluate
into data that is up to 3-dimensional. Any expression that results in higher dimension
(> 3-D) data will error out. To reduce the dimensionality, use the "[..., ::, ...]"
operator.

For example, consider a design that has a NumericSink N1 and 3 levels of sweep. If
such a dataset is used for generating data using NumericSource and the Expression
was set to "N1", the simulation will error out saying it was 4- dimensional data. To fix
it you can use "N1[O, ::, ::, ::]", which will now generate 3-dimensional matrix data
at the output.

If the length of simulation is larger than the available data in the dataset, use the
Periodic and Period parameters to repeat the old data. The Periodic parameter must
be set to YES for the output to repeat after the sample number equal to Period. If
Periodic = YES and Period = 0, the Period will be the index on the last data read in

630



Advanced Design System 2011.01 - Numeric Components
the dataset, and all of the data from the dataset will be read and repeated. If Periodic
= NO, the output will be zero after all data is read.
If ControlSimulation = YES, Period will determine how long the simulation runs. If
Period = 0, the simulation will run until the last data in the dataset is read.
2. The variable specified in an expression cannot be a variable that represents matrix
data generated using DSP designs.

3. For information regarding numeric source signals, refer to Numeric Sources
(numeric).

631



Advanced Design System 2011.01 - Numeric Components

RampFix

A
'\\\ -..//.-

Description: Fixed-Point Ramp Output

Library: Numeric, Sources

Class: SDFRampFix

Derived From: SDFFix

C++ Code: See doc/sp_items/SDFRampFix.html under your installation directory.

Parameters
Name Description Default Type Range
OverflowHandler |output overflow characteristic: wrapped, saturate, wrapped |enum
zero_saturate, warning
ReportOverflow |simulation overflow error report option: DONT_REPORT, REPORT |enum
REPORT
RoundFix fixed-point computations, assignments, and data type TRUNCATE enum
conversions option: TRUNCATE, ROUND
OutputPrecision |precision of output in bits and accumulation 2.14 precision
Step increment from one sample to the next 1.0 fix (-o0,
)
Value initial (or latest) value output by RampFix 0.0 fix (-00,
)
Pin Outputs

Pin [Name Description [Signal Type

1

output fix

Notes/Equations

1.

2.

3.

RampFix generates a ramp signal, starting at Value (default 0.0) and incrementing by
the step size specified by Step (default 1.0).

This component uses two's-complement arithmetic; the values of the OutputPrecision
parameter given by the designer must specify at least 1 bit to the left of the decimal
place (used a sign bit).

The value of the Step and Value parameters and their precision in bits can be
specified using two different notations.

Specifying only a value in the dialog box would create a fixed-point number with the
default precision, which has a total length of 32 bits with the number of integer bits
set as required by the value of the parameter. For example, the default value 1.0
creates a fixed-point object with precision 2.30, and a value like 0.5 would create one
with precision 1.31.

An alternate way of specifying the value and the precision is to use the parentheses
notation, which will be interpreted as (value, precision). For example, (2.546, 3.5)

632



Advanced Design System 2011.01 - Numeric Components

would create a fixed-point object by casting the double-precision floating-point (real)
number 2.546 to a fixed-point precision of 3.5.
This component has three precision specifications:

OutputPrecision given by designer

Step parameter precision (default or given by designer)

Value parameter precision (default or given by designer)

Certain conditions must be satisfied to get reasonable results.

the Step parameter precision should not have more integer or fractional bits
than OutputPrecision. Otherwise, the extra (if any) fractional bits will be handled
according to the value of the RoundFix parameter and the extra (if any) integer
bits will be handled according to the value of the OverflowHandler parameter.

if Value is not equal to 0, the OutputPrecision should not have more integer or
fractional bits than Value parameter precision. Otherwise, the extra (if any)
fractional bits will be handled according to the value of the RoundFix parameter
and the extra (if any) integer bits will be handled according to the value of the
OverflowHandler parameter.

Examples (OverflowHandler = wrapped and RoundFix = TRUNCATE is assumed):
Specifying OutputPrecision = "5.1" and Step = 0.25, will result in a constant
output equal to the value of the Value parameter possibly wrapped and
truncated to fit the output precision.

Specifying OutputPrecision = "5.1", Step = 0.5 and Value = 4.0 (default
precision is 4.28) will result in an output starting at 4.0, incrementing by 0.5 at
each step and saturating when 7.5 is reached.

Specifying OutputPrecision = "4.1", Step = 0.75 and Value = "(3.0, 4.1)" will
result in an output starting at 3.0, incrementing by 0.5 at each step and
wrapping to —8 after 7.5 is reached. The same output is obtained if Value has
other precisions specified that have more integer or fractional bits than
OutputPrecision. For example, "(3.0, 6.3)" will produce the same results.

4. For information regarding numeric source signals, refer to Numeric Sources
(numeric).

633



Advanced Design System 2011.01 - Numeric Components

RampFloat

‘4>
N, /|

Description: Ramp output

Library: Numeric, Sources

Class: SDFRampFloat

C++ Code: See doc/sp_items/SDFRampFloat.htm/ under your installation directory.

Parameters
Name Description Default Unit Type Range
Step |increment from one sample to the next 1.0 real |(-co0, c0)
Value |initial value output 0.0 real |(-oco0, c0)
Pin Outputs

Pin [Name Description [Signal Type
1 |output real

Notes/Equations

1. RampFloat generates a ramp signal, starting at Value (default 0.0) and incrementing
by the step size (default 1.0) specified by the Step parameter.
Because doubles have finite precision, the maximum value that RampFloat can
output is Step/DBL_EPSILON. For example, for a Step of 1, the maximum is
1FFFFFFFFFFFFF, or 9007199254740991. After that value, the output will remain
constant.

2. For information regarding numeric source signals, refer to Numeric Sources
(numeric).

634



Advanced Design System 2011.01 - Numeric Components

RamplInt

Description: Integer ramp output

Library: Numeric, Sources

Class: SDFRamplInt

C++ Code: See doc/sp_items/SDFRamplInt.html under your installation directory.

Parameters
Name Description Default Unit Type Range
Step |increment from one sample to the next |1 int (-0, )
Value |initial value output 0 int (-00, )
Pin Outputs

Pin [Name Description [Signal Type
1 |output int

Notes/Equations

1. Ramplnt generates an integer ramp signal, starting at Value (default 0) and
incrementing by the step size specified by Step (default 1).

2. For information regarding numeric source signals, refer to Numeric Sources
(numeric).

635



Advanced Design System 2011.01 - Numeric Components

ReadFile
/Read\

_>1

.
\ei1e/

Description: Waveform output from file

Library: Numeric, Sources

Class: SDFReadFile

C++ Code: See doc/sp_items/SDFReadFile.html under your installation directory.

Parameters

Name Description Default |Unit Type Range
FileName input file name file.txt filename
ControlSimulation |control simulation: NO, YES NO enum
OutputType output type: zero padded, periodic |periodic enum

Pin Outputs

Pin [Name Description [Signal Type
1 |output real

Notes/Equations

1. ReadFile reads ASCII data from a file. The simulation can be halted at end of file, the
file contents can be periodically repeated, or the file contents can be padded with
zeroes.

2. The input file is to be a text file that contains real array data in ADS Ptolemy format.
For details on this file format refer to Understanding Parameters (ptolemy) in the
ADS Ptolemy Simulation (ptolemy) documentation.

3. For information regarding numeric source signals, refer to Numeric Sources
(numeric).

636



Advanced Design System 2011.01 - Numeric Components

ReadFilePreProc

M

Description: Waveform output from file with preprocessing using a shell command
Library: Numeric, Sources

Class: SDFReadFilePreProc

Derived From: ReadFile

Parameters

Name Description Default |Unit Type Range
FileName input file name file.txt filename
ControlSimulation |control simulation: NO, YES NO enum
OutputType output type: zero padded, periodic |periodic enum

PerlFile data file pre-processing perl script filename

Pin Outputs

Pin /Name Description |Signal Type

1

output real

Notes/Equations

1.

ReadFilePreProc pre-processes the ASCII datafile specified in the FileName
parameter, using the perl script provided in PerlFile parameter. It is equivalent to
executing the command " perl PerlFile FileName' then using the results as ASCII input
to the design. The original datafile is not modified; instead, the processed file is
temporarily saved in the data directory (under the name tmp<InstanceName>.txt)
and removed at the end of simulation. The simulation can be halted at the end of file,
the file contents can be periodically repeated, or these can be padded with zeroes.
The resulting file must be a text file that contains real array data in ADS Ptolemy
format. For details on this file format refer to Understanding Parameters (ptolemy) in
the ADS Ptolemy Simulation (ptolemy) documentation.

. Use of this component is demonstrated in the File > Open > Example >

PtolemyDocExamples > Numeric_Sources_wrk. Open the networks design
ReadFilePreProc_example.

Also see: ReadFile (numeric).

For information regarding numeric source signals, refer to Numeric Sources
(numeric).

637



Advanced Design System 2011.01 - Numeric Components

Rect

-

Description: Rectangular pulse output

Library: Numeric, Sources

Class: SDFRect

C++ Code: See doc/sp_items/SDFRect.html under your installation directory.

Parameters

Name Description Default Unit Type Range
Height lheight of rectangular pulse 1.0 real |(-co0, o0)
Width |width of rectangular pulse 8 int [0, c0)
Period |if greater than zero, repetition period of pulse stream |0 int [0, c0)
Pin Outputs

Pin [Name Description Signal Type
1 |output joutput signal real

Notes/Equations

1. Rect generates a rectangular pulse of height and width specified by Height and
Width. If Period > 0O, the pulse is repeated with the given period.

2. For information regarding numeric source signals, refer to Numeric Sources
(numeric).

638



Advanced Design System 2011.01 - Numeric Components

RectCx

T
-

=

Description: Complex rectangular pulse output

Library: Numeric, Sources

Class: SDFRectCx

C++ Code: See doc/sp_items/SDFRectCx.html under your installation directory.

Parameters

Name Description Default Unit Type Range
Height lheight of rectangular pulse |1.0 complex

Width \width of rectangular pulse 240 int [0, c0)
Period |period of pulse stream 1024 int [0, c0)
Pin Outputs

Pin [Name Description Signal Type
1 |output joutput signal ,complex

Notes/Equations

1. RectCx generates a complex rectangular pulse specified by Height and Width. If
Period > 0, the pulse is repeated with the given period.

2. For details on complex parameter values, refer to Complex-Valued Parameters
(ptolemy) in the ADS Ptolemy Simulation (ptolemy) documentation.

3. For information regarding numeric source signals, refer to Numeric Sources
(numeric).

639



Advanced Design System 2011.01 - Numeric Components

RectCxDoppler
/: \‘ = 1

Description: Complex rectangular Doppler pulse output

Library: Numeric, Sources

Class: SDFRectCxDoppler

C++ Code: See doc/sp_items/SDFRectCxDoppler.html under your installation directory.

Parameters

Name Description Default Unit Type Range
Width width of rectangular pulse (240 int [0, o0)
Period period of pulse stream 1024 int [0, o0)
Bandwidth |signal bandwidth 1.0e9 real |[0.0, c0)
Te duration time 30.0*10"-6 real |[0.0, c0)
Fe emission frequency 3.0e9 real |[0.0, o)
Fsimu simulation frequency 8.0e6 real |[0.0, c0)
Vn target velocity 150.0 real |[0.0, c0)
Tp pulse period 1.0e-3 real |[0.0, c0)
Np pulse number 16 int [0, )
Fpor carrier frequency 3.0e9 real |[0.0, o0)
C light speed 3.0e8 real |[0.0, 3e8)
SNRn signal-to-noise ratio 10.0 real |[0, o)
SqgrPthn  |square root of noise power (1.0 real |[0, o)
Sdelay target delay 0 real |[0.0, c0)
Pin Outputs

Pin [Name Description Signal Type
1 |output joutput signal ,complex

Notes/Equations

1. RectCxDoppler generates a complex rectangular pulse of width specified by Width. If
Period > 0, the pulse is repeated with the given period.

2. For information regarding numeric source signals, refer to Numeric Sources
(numeric).



Advanced Design System 2011.01 - Numeric Components

RectFix

ZE
\h/ -

Description: Fixed-Point Rectangular Pulse Output

Library: Numeric, Sources

Class: SDFRectFix

Derived From: SDFFix

C++ Code: See doc/sp_items/SDFRectFix.html under your installation directory.

Parameters
Name Description Default Type Range
OverflowHandler |output overflow characteristic: wrapped, saturate, wrapped |enum
zero_saturate, warning
ReportOverflow |simulation overflow error report option: DONT_REPORT, REPORT |enum
REPORT
RoundFix fixed-point computations, assignments, and data type TRUNCATE enum
conversions option: TRUNCATE, ROUND
Height height of rectangular pulse 1.0 fix -00,
)
Width width of rectangular pulse 8 int [0, o)
Period period of pulse stream 0 int [0, )
OutputPrecision |precision of output in bits and accumulation 2.14 precision
Pin Outputs

Pin [Name Description Signal Type

1

output joutput signal [fix

Notes/Equations

1.

2.

RectFix generates a fixed-point rectangular pulse specified by Height and Width. If
Period > 0, the pulse is repeated with the given period.

OutputPrecision is specified using an I.r format, where / is the number of bits to the
left of the decimal place (including the sign bit) and r is the number of bits to the
right of the decimal place. For example, the precision 2.22 would represent a 24-bit
fixed-point number with 1 sign bit, 1 integer bit, and 22 fractional bits.

This component uses two's-complement arithmetic; the values of the OutputPrecision
parameter given by the designer must specify at least 1 bit to the left of the decimal
place (used a sign bit).

For information regarding numeric source signals, refer to Numeric Sources
(numeric).

641



Advanced Design System 2011.01 - Numeric Components

SineGen

Description: Sine wave output

Library: Numeric, Sources

Class: SDFSineGen

C++ Code: See doc/sp_items/SDFSineGen.html under your installation directory.

Parameters
Name Description Default Unit Type Range
RadiansPerSample |radians per sample pi/50 real |(-o0, c0)
InitialRadians initial phase, in radians |0 real |(-co0, c0)
Pin Outputs

Pin [Name Description Signal Type
1 |output joutput signal real

Notes/Equations

1. SineGen generates the sequence of numbers given by sin(w x n +®),n=0, 1, ...

where w equals RadiansPerSample and ® equals InitialRadians.
2. For information regarding numeric source signals, refer to Numeric Sources
(numeric).

642



Advanced Design System 2011.01 - Numeric Components

WaveForm

ZEN
/ "I"nlu _»1
\L =

Description: Waveform output

Library: Numeric, Sources

Class: SDFWaveForm

C++ Code: See doc/sp_items/SDFWaveForm.html under your installation directory.

Parameters

Name Description Default Unit Type Range
Value waveform values 1-1 real array
ControlSimulation |control simulation: NO, YES NO enum

Periodic periodic output: NO, YES YES enum

Period period of waveform when greater than zero |0 int [0, o0)
Pin Outputs

Pin /Name Description |Signal Type

1

output real

Notes/Equations

1. Waveform outputs a waveform specified by Value. You can get periodic signals with

any period, and halt a simulation at the end of the given waveform. Waveform
Outputs summarizes the operations.

Value can be specified directly or read from a file. To use data from a file, replace the
default coefficients with the string, <filename. For details using arrays of data for
parameter values, refer to Understanding Parameters (ptolemy) in the ADS Ptolemy
Simulation (ptolemy) documentation. The size of the array is currently limited to
20,000 samples. The complete file is be read and its contents stored in an array. To
read longer files use the ReadFile component, which reads one sample at a time and
therefore uses less storage.

Waveform Outputs

StopSimulation |Periodic |Period |Operation

do not stop yes 0 period is length of waveform

do not stop yes N>0 period is N

do not stop no any output the waveform once, then zeros
stop at end any any stop after outputting the waveform once

2. For information regarding numeric source signals, refer to Numeric Sources

643



Advanced Design System 2011.01 - Numeric Components
(numeric).

644



Advanced Design System 2011.01 - Numeric Components

WaveFormCx

Description: Complex waveform output

Library: Numeric, Sources

Class: SDFWaveFormCx

C++ Code: See doc/sp_items/SDFWaveFormCx.html under your installation directory.

Parameters

Name Description Default Unit Type Range
Value waveform values (1) (-1) complex array
ControlSimulation |control simulation: NO, YES NO enum

Periodic periodic output: NO, YES YES enum

Period period of waveform when greater than zero |0 int [0, o0)
Pin Outputs

Pin /Name Description |Signal Type
1 |output complex

Notes/Equations

1. WaveFormCx outputs a complex waveform as specified by Value. You can get
periodic signals with any period, and halt a simulation at the end of the given
waveform. Waveform Operations are summarized below.

The Value may be specified directly or these may be read from a file. To use data
from a file, replace the default coefficients with the string, <filename. The size of the
array is currently limited to 20,000 samples. The entire file will be read and its
contents stored in an array. To read longer files, use the ReadFile component, which
reads one sample at a time and therefore uses less storage.

Waveform Operations

StopSimulation |Periodic |Period |Operation

do not stop yes 0 period is length of waveform

do not stop yes N>0 period is N

do not stop no any output the waveform once, then zeros
stop at end any any stop after outputting the waveform once

2. For details on complex parameter values, refer to Complex-Valued Parameters
(ptolemy) in the ADS Ptolemy Simulation (ptolemy) documentation.
For details on using complex arrays of data, refer to Value Types (ptolemy) in the

645



Advanced Design System 2011.01 - Numeric Components
ADS Ptolemy Simulation (ptolemy) documentation.
3. For information regarding numeric source signals, refer to Numeric Sources
(numeric).

646



Advanced Design System 2011.01 - Numeric Components

Window

. _»1

Description: Window data

Library: Numeric, Sources

Class: SDFWindow

C++ Code: See doc/sp_items/SDFWindow.html under your installation directory.

Parameters
Name Description Default Unit Type |Range
Name name of window function to generate (Rectangle, Bartlett, Hanning string
Hanning, Hamming, Blackman, SteepBlackman, or Kaiser)
Length length of window function to produce 256 int [4, o)
Period period of the output 0 int [0, )
WindowParameters |array of values for the window 0 real
array
Pin Outputs

Pin [Name Description [Signal Type
1 |output real

Notes/Equations

1. Window generates standard window functions or periodic repetitions of standard
window functions. One period of samples is produced at each simulation. It produces
output values that are samples of a standard windowing function.

2. Length is the length of the window to produce; most window functions have a 0 value
at the first and last sample.

3. Period specifies the period of the output signal. The window will be zero-padded if
required. Period = 0 means a period equal to Length.

A negative period will produce one window, then output O for all later samples. A
period of less than the window length will be equivalent to a period of the window
length (that is, Period = 0).

4, For the Kaiser window, the first entry in WindowParameters is taken as the beta
parameter that is proportional to the stopband attenuation of the window.

5. The WindowParameters value may be specified directly or these may be read from a
file. To use data from a file, replace the default coefficients with the string, <filename.
For details on using arrays of data for parameter values, refer to Understanding
Parameters (ptolemy) in the ADS Ptolemy Simulation (ptolemy) documentation.

6. For information regarding numeric source signals, refer to Numeric Sources
(numeric).

References

647



Advanced Design System 2011.01 - Numeric Components

1. Leland Jackson, Digital Filters and Signal Processing, 2nd ed., Kluwer Academic
Publishers, ISBN 0-89838-276-9, 1989.

648



Advanced Design System 2011.01 - Numeric Components

Numeric Special Functions

AdaptLinQuant (numeric)
Compress (numeric)
DeadZone (numeric)
Dirichlet (numeric)
Expand (numeric)
LatchClocked (numeric)
Limit (numeric)
LinQuantIdx (numeric)
MuLaw (numeric)
OrderTwolnt (numeric)
PcwzLinear (numeric)
Polynomial (numeric)
Quant (numeric)
QuantIdx (numeric)
Quantizer (numeric)
Quantizer2D (numeric)
SchmittTrig (numeric)
Table (numeric)
TableCx (numeric)
TableInt (numeric)
Toggle (numeric)
Unwrap (numeric)

The numeric special functions components provide data processing functions common to
communication systems such as signal quantizers, signal compressor, signal expandors
and other block that operate on single data points or arrays of data that are integer,
double precision floating-point (real), or complex values. Each component accepts a
specific class of signal and outputs a resultant signal. (These components do not accept
any matrix class of signal.)

If a component receives another class of signal, the received signal is automatically
converted to the signal class specified as the input of the component. Auto conversion
from a higher to a lower precision signal class may result in loss of information. The auto
conversion from timed, complex or floating-point (real) signals to a fixed signal uses a
default bit width of 32 bits with the minimum number of integer bits needed to represent
the value. For example, the auto conversion of the floating-point (real) value of 1.0
creates a fixed-point value with precision of 2.30, and a value of 0.5 would create one of
precision of 1.31. For details on conversions between different classes of signals, refer to
Conversion of Data Types (ptolemy) in the ADS Ptolemy Simulation (ptolemy)
documentation.

Some components accept parameter values that are arrays of data. The syntax for
referencing arrays of data as parameter values includes an explicit list of values, a
reference to a file that contains those values, or a combination of explicit values along
with file references. For details on using arrays of data for parameter values, refer to
Understanding Parameters (ptolemy) in the ADS Ptolemy Simulation (ptolemy)
documentation.

649



Advanced Design System 2011.01 - Numeric Components

AdaptLinQuant

Description: Adaptive linear quantizer

Library: Numeric, Special Functions

Class: SDFAdaptLinQuant

C++ Code: See doc/sp_items/SDFAdaptLinQuant.htm/ under your installation directory.

Parameters

Name Description |Default Unit Type |Range
Bits number of bits |8 int [1, 31]
Pin Inputs

Pin [Name |Description Signal Type

1 Jinput real
2 |inStep real
Pin Outputs

Pin Name Description Signal Type

3 |amplitude real
4  |outStep real
5 |stepLevel int

Notes/Equations

1. AdaptLinQuant quantizes the input to the number of levels given by 2 BitS | The
quantization levels are uniformly spaced at the step size given by the inStep input

value and are odd symmetric about zero. Therefore, the high threshold is (2 Bits =1
)(inStep/2), and the /ow threshold is the negative of the high threshold.

2. Rounding to the nearest level is performed. The output level will equal high only if
the input level equals or exceeds high. If the input is below low, then the quantized
output will equal /ow.

3. The quantized value is output on the amplitude port as a floating-point (real) value,
the step size is output on the outStep port as a floating-point (real) value, and the
index of the quantization level is output on the stepLevel port as a non-negative

integer between 0 and 2 Bits = 1,
4, For information regarding numeric special function component signals, refer to
Numeric Special Functions (numeric).

650



Advanced Design System 2011.01 - Numeric Components

Compress

1 'H‘ _p?

Description: Compression part of a compander
Library: Numeric, Special Functions

Class: SDFCompress

Derived From: baseOmniSysNumericStar

Parameters

Name Description Default Unit Type Range

Type compression law: MU-law, A-law MU-law enum

CompressionK |compression constant 1 real

Max maximum input value 1 real (0.0, o)
magnitude

Pin Inputs

Pin Name Description Signal Type
1 |input |input signal |real
Pin Outputs

Pin Name Description |Signal Type
2 |output|output signal real

Notes/Equations

1. Compress can be used to obtain the MU-law and A-law compression characteristics.
The output signal is always a baseband signal.
2. Let x’ (n) = x(n)/Max

MU-law:
P sgnfx’(n)]In {10+ plx"(n)[} o o
yin) = Vy (L0 T forp=0
A-law:
§ oo Fe A Fe L .
‘ M :vﬂ[io'xf-?ﬂl;l:]kﬂ.ll for |x"(r)] < 1/A
j"'LH]: . l lDA . .
11{ sgn [x ml:ll{_._lL;A[-, lx(r=)|]7 for |v'(n)| 2 1/A
where

y(n) is the Output for sample n
x(n) is the Input for sample n
V \y is Max, the maximum input value magnitude

M is the compression constant for MU-law
A is the compression constant for A-law

651



Advanced Design System 2011.01 - Numeric Components
3. The output signal versus input signal plot of the Compress component, with Type =
MU-law, CompressionK = 255, and Max = 1V, is shown below.

Compress Signal Plot

Output signal
{units)

Input signal {units)

1. For information regarding numeric special function component signals, refer to
Numeric Special Functions (numeric).

652



Advanced Design System 2011.01 - Numeric Components

DeadZone

Description: Dead Zone Nonlinearity
Library: Numeric, Special Functions
Class: SDFDeadZone

Derived From: baseOmniSysNumericStar

Parameters

Name Description Default Unit Type Range

K magnitude gain 1 real |(-o0, 0.0) or (0.0, c0)
Low |lower dead zone value |0 real |(-oco0, High)

High |higher dead zone value |1 real |(-c0, o)

Pin Inputs

Pin [Name |Description Signal Type
1 Jinput |input signal |real
Pin Outputs

Pin [Name Description Signal Type
2 |output output signal |real

Notes/Equations

1. DeadZone models a dead zone nonlinearity. Its output is always a floating-point
(real) signal.

K(x(n)-Vy) for x(n)>V,
y(n)= K(x(n}—VE) for x(n]-‘:.VE

0 otherwise

where:

y(n) is the output for sample n
x(n) is the input for sample n
K is the magnitude of the gain
V| is the High dead zone value

vV, is the Low dead zone value

2. The output signal versus input signal plot of DeadZone, with K = 1, Low = 0 and High
= 1, is shown below.

653



Advanced Design System 2011.01 - Numeric Components
DeadZone Signal Plot

Cutput signal
{units)

Input signal (units)

For information regarding numeric special function component signals, refer to
Numeric Special Functions (numeric).

654



Advanced Design System 2011.01 - Numeric Components

Dirichlet

Description: Dirichlet (aliased sinc) function

Library: Numeric, Special Functions

Class: SDFDirichlet

C++ Code: See doc/sp_items/SDFDirichlet.html under your installation directory.

Parameters

Name Description Default Unit Type Range
N length of Dirichlet kernel |10 int (-co, o)
Pin Inputs

Pin |[Name |Description Signal Type
1 Jinput |The input x to the Dirichlet kernel. |real

Pin Outputs

Pin [Name Description Signal Type

2 |output [The output of the Dirichlet kernel. |real

Notes/Equations

1. Dirichlet computes the normalized Dirichlet kernel (also called the aliased sinc
function).

2. The value of the normalized Dirichlet kernel at x = 0 is always 1, and the normalized
Dirichlet kernel oscillates between —1 and +1. The normalized Dirichlet kernel is
periodic in x with a period of either 2 n when N is odd or 4 n when N is even.

3. The Dirichlet kernel is the discrete-time Fourier transform (DTFT) of a sampled pulse
function. The parameter N is the length of the pulse [1].

See also: Sinc (numeric) component.

4. For information regarding numeric special function component signals, refer to

Numeric Special Functions (numeric).

References

1. A. V. Oppenheim and R. W. Schafer, Discrete-Time Signal Processing, Prentice-Hall:
Englewood Cliffs, NJ, 1989.

655



Advanced Design System 2011.01 - Numeric Components

Expand

aimd

Description: Expander part of a compander
Library: Numeric, Special Functions

Class: SDFExpand

Derived From: baseOmniSysNumericStar

=%

Parameters

Name Description Default Unit Type Range

Type compression law: MU-law, A-law MU-law enum

CompressionK |compression constant 1 real

Max maximum input value 1 real (0.0, o)
magnitude

Pin Inputs

Pin Name Description Signal Type
1 |input |input signal |real
Pin Outputs

Pin Name Description |Signal Type
2 |output|output signal real

Notes/Equations

1. Expand can be used to obtain the A-law and MU-law expansion characteristics. The
output of this component is always a baseband signal.
2. The following equations describe the characteristics of the component:

Let
x'(n) = x(n)/Vyy
Then
MU-law:
V o
M )
yin) = —Lsgn((m)((1+™ ™ - 1)
A-law:
V(1 +1n(A))
A x'(n) forx'(n)<1/A
y(n): 4 v
IMsgn(x’(n}]el‘lxmjll‘l tin(a))-1) forx'(n)>1/A

656



Advanced Design System 2011.01 - Numeric Components
where:

y(n) is the output for sample n
x(n) is the input for sample n
V \ is Max, the maximum input value magnitude

M is the compression constant for MU-Law
A is the compression constant for A-Law

3. The output signal versus input signal plot of the Expand component, with Type = MU-
law, CompressionK = 255, and Max = 1V, is shown below.

Expand Component Signal Plot

Cutput signal

- n.0
{units)

Input signal {units)

4, For information regarding numeric special function component signals, refer to
Numeric Special Functions (numeric).

657



Advanced Design System 2011.01 - Numeric Components

LatchClocked
1 ]I_'l 4

Description: Data Latch with Clock Input
Library: Numeric, Special Functions
Class: SDFLatchClocked

Derived From: baseOmniSysNumericStar

Parameters

Name |Description Default Unit Type Range
ResetCx |complex output when reset pin is high |0.0 complex

Pin Inputs

Pin [Name Description Signal Type
1 Jinput |input signal |complex

2 |clock |clock signal |int

3 |reset |reset sighal |int

Pin Outputs

Pin [Name Description Signal Type
4  |output joutput signal |complex

Notes/Equations

1. LatchClocked can be used to latch complex numbers. The input is latched with the
positive edge of the clock. The outputs can be reset asynchronously to the values
specified by input2 and input3 by setting the signal at the reset pin to high.

The component is positive edge sensitive to the clock input and level sensitive to the
reset input. The reset signal is asynchronous.

2. For details on complex parameter values, refer to Complex-Valued Parameters
(ptolemy) in the ADS Ptolemy Simulation (ptolemy) documentation.

3. For information regarding numeric special function component signals, refer to
Numeric Special Functions (numeric).

658



Advanced Design System 2011.01 - Numeric Components

Description: Limiter

Library: Numeric, Special Functions

Class: SDFLimit

C++ Code: See doc/sp_items/SDFLimit.html under your installation directory.

Parameters

Name |Description Default Unit Type Range

K magnitude gain 1.0 real |(-c0 0.0) or (0.0, c0)
Bottom |lower output saturation value 0.0 real |(-c0, Top)

Top higher output saturation value 1.0 real |[(-c0, o)

Type |type of limiting curve: linear, atan |linear enum

Pin Inputs

Pin /Name Description Signal Type
1 input real
Pin Outputs

Pin Name Description Signal Type
2 |output real

Notes/Equations

1. Limit can be used to model two different types of limiting nonlinearities. The output is
always a floating-point (real) signal.
2. If Type = linear

. 14
VE Lf?{(n) < E
(V) V
y(n)y Kx(n) .if%‘_ix(n) < fh
Vi

3. If Type = atan
y(n) = offset + scale * atan( (K*x(n) - offset) / scale ), where:
y(n) is the output for sample n
x(n) is the input for sample n

659



Advanced Design System 2011.01 - Numeric Components
K is the magnitude gain
scale = (V, - V| )/pi

offset = (V,, + V,)/2

V| is the lower output saturation value (Bottom)

V,, is the higher output saturation value (Top)

The output signal versus input signal plot of Limit (parameters K = 1, V|, = -1, and V,,

= 1) is shown below for linear and atan types.

Limit Component Signal Plot

i
L

Output signal aa

{units) Typesatan /
—h.% e
\ -Type=ligear

TIML .5 usmosO0Y
Input signal {units)

. For information regarding numeric special function component signals, refer to
Numeric Special Functions (numeric).

660



Advanced Design System 2011.01 - Numeric Components

LinQuantIdx

Description: Uniform quantizer with step number output

Library: Numeric, Special Functions

Class: SDFLinQuantIdx

C++ Code: See doc/sp_items/SDFLinQuantIdx.html under your installation directory.

Parameters

Name Description Default |Unit Type Range
Levels [number of quantization levels |128 int [1, o)
Low |lower limit of signal excursion |-3.0 real |(-oco0, High)
High |upper limit of signal excursion |3.0 real |(-c0, o)
Pin Inputs

Pin [Name |Description Signal Type

1 |input real

Pin Outputs

Pin Name Description |Signal Type
2 |amplitude real

3 |stepNumber int

Notes/Equations

1. LinQuantIdx quantizes the input value to the number of levels given by the Levels
parameter plus 1. The quantization levels are uniformly spaced between Low and
High inclusive. Rounding down is performed-the output level will equal High if the
input level equals or exceeds High; if the input is below Low, the quantized output
will equal Low. The quantized value is output to the SignalOut port, while the index of
the quantization is output to the StepNumber port. This integer output is useful for
components that need an integer input.

2. For information regarding numeric special function component signals, refer to
Numeric Special Functions (numeric).

661



Advanced Design System 2011.01 - Numeric Components

MulLaw

Description: Mu law compressor

Library: Numeric, Special Functions

Class: SDFMulLaw

C++ Code: See doc/sp_items/SDFMulLaw.htm/ under your installation directory.

Parameters

Name Description Default Unit Type Range
Compress lenable compression 1 int

Mu mu parameter, a positive integer (255 int [0, c0)
Denom |denominator of mu-law definition |1.0 real |(-co0, )
Pin Inputs

Pin [Name |Description Signal Type

1

input real

Pin Outputs

Pin |[Name |Description Signal Type

2

output real

Notes/Equations

1. MulLaw transforms the input using a logarithmic mapping if the Compress parameter
is true. In telephony, applying p—law to 8-bit sampled data is called companding and
is used to quantize the dynamic range of speech more accurately [1]. The
transformation is defined in terms of the non-negative integer parameter Mu:

In{1.0+ plx(nr)}
= forpn=0
y(n) m(o+p) oot
where
y(n) is the output for sample n
x(n) is the input for sample n

2. For information regarding numeric special function component signals, refer to

Numeric Special Functions (numeric).
References
1. S. Haykin, Communication Systems 3rd ed., John Wiley Sons, 1994, p. 380.

662



Advanced Design System 2011.01 - Numeric Components

OrderTwolnt
2 4
1 3

Description: Ordered Two Integer Output

Library: Numeric, Special Functions

Class: SDFOrderTwolnt

C++ Code: See doc/sp_items/SDFOrderTwolnt.htm/ under your installation directory.

Pin Inputs

Pin [Name Description Signal Type

1 |upper int
2 |lower int
Pin Outputs

Pin [Name Description |[Signal Type
3 |greater int
4 |lesser int

Notes/Equations

1. OrderTwolnt takes two inputs and outputs the greater and lesser of the two integer
inputs.
¥y = max(x.x,)

Yo = min(x.x,)

where
y 1 is the greater output

y , is the lesser output
X 4 is the upper input
X 5 is the lower input

2. For information regarding numeric special function component signals, refer to
Numeric Special Functions (numeric).

663



Advanced Design System 2011.01 - Numeric Components

PcwzLinear

AN
]

Description: Piecewise Linear Map Output

Library: Numeric, Special Functions

Class: SDFPcwzLinear

C++ Code: See doc/sp_items/SDFPcwzLinear.html under your installation directory.

Parameters
Name Description Default Unit Type Range
Breakpoints |endpoints and breakpoints in the (-1.0,-1.0) (0.0,1.0) (1.0,- complex
mapping 1.0) array
Pin Inputs

Pin /Name Description Signal Type
1 |input |input signal |real
Pin Outputs

Pin Name Description Signal Type
2 |output output signal |real

Notes/Equations

1. PcwzLinear implements a piecewise linear mapping from the input to the output.
Mapping is given by a sequence of (X,y) pairs that specify breakpoints in the
function; the sequence of x values must be increasing. The function implemented by
this component can be represented by drawing straight lines between the (x,y) pairs,
in sequence. (Each input value will be treated as a point on the x axis; the
corresponding y value will be assigned to the output.)

Default mapping is the tent map, in which inputs between —1.0 and 0.0 are linearly
mapped into the range —1.0 to 1.0.

Inputs between 0.0 and 1.0 are mapped into the same range, but with opposite
slope, 1.0 to —1.0. If the input is outside the range specified in the x values of the
breakpoints, then the appropriate extreme value will be used for the output.
Therefore, for the default map: if the input is —2.0, the output will be —1.0; if the
input is +2.0, the output will again be —1.0.

2. For details on complex parameter values, refer to Complex-Valued Parameters
(ptolemy) in the ADS Ptolemy Simulation (ptolemy) documentation.

For details on using complex arrays of data, refer to Value Types (ptolemy) in the
ADS Ptolemy Simulation (ptolemy) documentation.

3. For information regarding numeric special function component signals, refer to

Numeric Special Functions (numeric).

664



Advanced Design System 2011.01 - Numeric Components

665



Advanced Design System 2011.01 - Numeric Components

Polynomial

Description: Polynomial input-output relationship
Library: Numeric, Special Functions
Class: SDFPolynomial

Parameters

Name Description Default Unit Type Range
Coefficients |Polynomial coefficients, 0-th order coefficient first |0 1 real array

Pin Inputs

Pin Name Description Signal Type
1 |input |input signal |real
Pin Outputs

Pin Name Description Signal Type
2 |output |output signal |real

Notes/Equations

1. This component models a system with a polynomial input-output relationship. If the
inputisx,theoutputisy=c0+c1><x+c2><x2+ et Cy x x N where N is the
order of the polynomial and c 5, ..., ¢\ are the elements of the Coefficients

parameter.

2. For information regarding numeric special function component signals, refer to
Numeric Special Functions (numeric).

666



Advanced Design System 2011.01 - Numeric Components

Description: Quantizer

Library: Numeric, Special Functions

Class: SDFQuant

C++ Code: See doc/sp_items/SDFQuant.html under your installation directory.

Parameters

Name Description Default Unit Type Range
Thresholds |quantization thresholds, in increasing order 0.0 real array

Levels output levels. If empty use 0, 1, 2, ... real array

Pin Inputs

Pin [Name |Description Signal Type
1 |input real
Pin Outputs

Pin [Name Description [Signal Type
2 |output real

Notes/Equations

1. Quant quantizes the input value to one of N+1 possible output levels using N
thresholds.

« For input < n t threshold, but > all previous thresholds, the output will be the n
th jevel.
« For input > all thresholds, the output is N+1 th Jevel.

« For input < all thresholds, the output is 0 th level.

2. If the level is specified, there must be one more level than thresholds. The default
value for level is 0, 1, 2, ... N.

This component takes on the order of log N steps to find the right level, whereas the
linear quantizer component LinQuantIdx takes a constant amount of time. Therefore,
for linear quantization, use the LinQuantldx component.

3. Assume that the Thresholds parameter is set to (8.1, 9.2, 10.3) and that the Levels
parameter is not set so that the default values of (0.0, 1.0, 2.0, 3.0) are used. An
input of —1.5 would give an output of 0.0; an input of 8.2 would give an output of
1.0; and, an input of 15.5 would give an output of 3.0.

4. For details on using arrays of data for parameter values, refer to Understanding
Parameters (ptolemy) in the ADS Ptolemy Simulation (ptolemy) documentation.

5. For information regarding numeric special function component signals, refer to
Numeric Special Functions (numeric).

667



Advanced Design System 2011.01 - Numeric Components

668



Advanced Design System 2011.01 - Numeric Components

Quantldx

Description: Quantizer with Step Number Output

Library: Numeric, Special Functions

Class: SDFQuantIdx

C++ Code: See doc/sp_items/SDFQuantIdx.htm/ under your installation directory.

Parameters

Name Description Default Unit Type Range
Thresholds |quantization thresholds, in increasing order 0.0 real array

Levels output levels. If empty use 0, 1, 2, ... real array

Pin Inputs

Pin [Name |Description Signal Type

1 |input real

Pin Outputs

Pin Name Description Signal Type
2 |output real

3 |stepNumber Level of the quantization from 0 to N-1 |int

Notes/Equations

1. Quantldx quantizes the input value to one of N+1 possible output levels using N
thresholds. This component also outputs the quantization level (stepNumber).

For an input less than or equal to the n th threshold, but larger than all previous
thresholds, the output will be the n ™ level. If the input is greater than all thresholds,
the output is the N+1 th Jevel. If the input is less than all thresholds, the output is the

0 t level.

2. If the level is specified, there must be one more level than thresholds. The default
value for level is 0, 1, 2, ... N. This component takes on the order of log N steps to
find the right level, whereas the linear quantizer component LinQuantIdx takes a
constant amount of time. Therefore, for linear quantization, use the LinQuantIdx
component.

3. Assume that the Thresholds parameter is set to (8.1, 9.2, 10.3) and that the Levels
parameter is not set so that the default values of (0.0, 1.0, 2.0, 3.0) are used. An
input of —1.5 would give an output of 0.0; an input of 8.2 would give an output of
1.0; and, an input of 15.5 would give an output of 3.0.

4. For details on using arrays of data for parameter values, refer to Understanding
Parameters (ptolemy) in the ADS Ptolemy Simulation (ptolemy) documentation.

5. For information regarding numeric special function component signals, refer to

669



Advanced Design System 2011.01 - Numeric Components
Numeric Special Functions (numeric).

670



Advanced Design System 2011.01 - Numeric Components

Quantizer

3
B = _JF 2

Description: Quantizer Using CodeBook

Library: Numeric, Special Functions

Class: SDFQuantizer

C++ Code: See doc/sp_items/SDFQuantizer.htm/ under your installation directory.

Parameters

Name Description Default Unit Type Range
FloatCodebook |possible output values |0.0 1.0 2.0 3.0 4.0 5.0 6.0 7.0 8.0 9.0 real array

Pin Inputs

Pin [Name |Description Signal Type

1 Jinput real

Pin Outputs

Pin Name |Description Signal Type
2 |output |Closest value in the codebook real

3 |outIndex Index of the closest value in the codebook |int

Notes/Equations

1. Quantizer quantizes the input value to the nearest output value in the given
codebook. The nearest value is found by a full search of the codebook, so this
component will be significantly slower than either the Quant or LinQuantIdx
components. The absolute value of the difference is used as a distance measure. The
index of the closest value in the codebook is also output.

2. For details on using arrays of data for parameter values, refer to Understanding
Parameters (ptolemy) in the ADS Ptolemy Simulation (ptolemy) documentation.

3. For information regarding numeric special function component signals, refer to
Numeric Special Functions (numeric).

671



Advanced Design System 2011.01 - Numeric Components

Quantizer2D

Description: 2-dimensional quantizer
Library: Numeric, Special Functions
Class: SDFQuantizer2D

Derived From: baseOmniSysNumericStar

Parameters

Name Description Default Unit Type Range
VxMax maximum real output level 1.0 real (-00, 00)
VxMin minimum real output level -1.0 real (-o0, VxMax)
Nx number of real output levels 16 int [1, )
VyMax maximum imaginary output level |[1.0 real (-o0, )
VyMin minimum imaginary output level |-1.0 real (-c0, VyMax)
Ny number of imaginary output levels |16 int [1, o)
QuantList luser-defined quantization points complex array

Pin Inputs

Pin [Name |Description Signal Type
1 Jinput |input signal |complex
Pin Outputs

Pin [Name Description Signal Type
2  |output |output signal [complex

Notes/Equations

1. The complex number input is mapped to one of a finite set of complex numbers. Any
arbitrary set of points can be specified as the set of output points by using a file or a
list, or else the parameters VxMax, VxMin, Nx, VyMax, VyMin and Ny can be used to
set up a rectangular grid of output points.

The ability to specify output points by a file or a list can be used to define arbitrary
2D quantizers. Each input is mapped to the nearest output point, where the metric
used to determine the nearest output point is the Euclidean distance. This type of a
quantizer is also referred to as a Voronoi or a nearest neighbor vector quantizer [1].
2D Quantizer with Three Output Points shows an example where three output points
P1, P2, and P3 have been specified. The entire 2D plane is then divided into 3
regions, R1, R2, and R3, which are shown by the dotted lines. Any input point in
region R1 is mapped to the output point P1 (and similarly for the other regions).

2D Quantizer with Output Points On a Grid illustrates how a rectangular grid of
output points can be set up by using the parameters VxMax, VxMin, Nx, VyMax,

672




Advanced Design System 2011.01 - Numeric Components
VyMin and Ny.
Due to the regular lattice structure of this quantizer, it can be implemented efficiently
in terms of speed. Therefore, it is more efficient to use this second method of
specifying a quantizer than using a file or a list of output points.
When a file or list is used to specify the list of output points, data is entered for the
QuantList parameter as an ordered list of complex values.
Data entered as an explicit array has the form:
QuantList = "(1, 0) (0.707, 0.707) (0, 1) ( —0.707, 0.707) ( —1, 0) ( —
0.707, —0.707) (0, —1) (0.707, —0.707)"
As an alternative from an explicit list, this dataset can be contained in a text file and
referenced by name as follows:
QuantlList = "<myquantlist.cx"
where the file named myquantlist.cx must be located in the current workspace data
subdirectory. If not in the data subdirectory, then the file name must include the full
directory path as the prefix to the file name. The contents of this file is simply the
complex values where the separator can be a comma, space, tab, or new line, with
one or more complex pairs per line:
(1, 0) (0.707, 0.707)
(0, 1) (-0.707, 0.707)
(-1, 0) (-0.707, —0.707)
(0, —1) (0.707, —=0.707)
This above dataset can be used to create a quantizer for an 8PSK receiver whose
signal set consists of 8 points equally spaced on a unit circle. Quantizer2D shows the
points and the decision regions (in dotted lines) for this quantizer.
For details on complex parameter values, refer to Complex-Valued Parameters
(ptolemy) in the ADS Ptolemy Simulation (ptolemy) documentation.
For details on using complex arrays of data, refer to Value Types (ptolemy) in the
ADS Ptolemy Simulation (ptolemy) documentation.

. For information regarding numeric special function component signals, refer to

Numeric Special Functions (numeric).

2D Quantizer with Three Output Points

'

=
¥

2D Quantizer with Output Points On a Grid

673



Advanced Design System 2011.01 - Numeric Components

4
, Max
o | [a] [ !
!
. SR ) |
a Shlin | ! ! | Ahax .
- T T L
o I o : o
|
Hx=3 '__j____“__'
Hy=4 fal | u] : fal
B T
fa] ' o I o
O Yhin o
¥
Quantizer2D
. P
n
D\‘ llr
- i ! D.—-"_
. = —— £+ o
___.-' SN "'H-_\_H
- r Yoo

674



Advanced Design System 2011.01 - Numeric Components

SchmittTrig

Description: Schmitt Trigger

Library: Numeric, Special Functions
Class: SDFSchmittTrig

Derived From: baseOmniSysNumericStar

Parameters

Name Description Default Unit Type Range
ILow |lower input trigger value |-1 real |(-o0, IHigh)
IHigh |higher input trigger value |1 real |(-o0, c0)
OLow |lower output trigger value |-1 real |(-o0, OHigh)
OHigh |higher output trigger value |1 real |(-o0, o)
Pin Inputs

Pin /Name Description Signal Type
1 |input |input signal |real
Pin Outputs

Pin Name Description Signal Type
2 |output |output signal |real

Notes/Equations

1. SchmittTrig is a Schmitt trigger with programmable levels. The output is always a
floating-point (real) signal.

2. The output signal versus input signal plot, with parameters ILow = —1, IHigh = 1,
OLow = —1, and OHigh = 1, is shown below.

SchmittTrig Signal Plot

675



Output signal
{units)

—0.

a.

o A

Advanced Design System 2011.01 - Numeric Components

Input signal {units)

For information regarding numeric special function component signals, refer to

Numeric Special Functions (numeric).

676

| —--Voh

-l



Advanced Design System 2011.01 - Numeric Components

Table

CHH

1 _.'_2

Description: Indexed Lookup Table Output

Library: Numeric, Special Functions

Class: SDFTable

C++ Code: See doc/sp_items/SDFTable.htm/ under your installation directory.

Parameters

Name |Description Default Unit Type Range
Values |table of values to output |{-1, 1} real array

Pin Inputs

Pin [Name |Description Signal Type
1 |input int
Pin Outputs

Pin [Name Description [Signal Type
2 |output real

Notes/Equations

1. Table implements a real-valued lookup table indexed by an integer-valued input. The
input values must be between 0 and N — 1, inclusive, where N is the size (number of
elements) of the Values parameter. N must be less than 20,000. The first element of
the Values parameter is indexed by an input with value 0. The last element of the
Values parameter is indexed by an input with value N — 1. An error occurs if the
input value is outside the interval [0, N — 1].

2. Example. Let's assume the Values parameter is set to {-1.0, -0.333, 0.333, 1.0} (the
4 signal levels of a PAM-4 system). If the input signal values are 0, 0, 3, 1,0, 1, 3, 2,
3,1, 0, 2, then the output signal values will be -1.0, -1.0, 1.0, -0.333, -1.0, -0.333,
1.0, 0.333, 1.0, -0.333, -1.0, 0.333.

3. For details on using arrays of data for parameter values, refer to Understanding
Parameters (ptolemy) in the ADS Ptolemy Simulation (ptolemy) documentation.

4. For information regarding numeric special function component signals, refer to
Numeric Special Functions (numeric).

677



Advanced Design System 2011.01 - Numeric Components

TableCx
1 E 2

Description: Indexed Complex Lookup Table Output

Library: Numeric, Special Functions

Class: SDFTableCx

C++ Code: See doc/sp_items/SDFTableCx.html under your installation directory.

Parameters

Name |Description Default Unit Type Range
Values |table of values to output |[{(1), (j), (-1), (-1, (0), (1), (), (1)} complex array

Pin Inputs

Pin [Name |Description Signal Type
1 J|input int
Pin Outputs

Pin Name Description |Signal Type
2 |output complex

Notes/Equations

1. TableCx implements a complex-valued lookup table indexed by an integer-valued
input. The input must lie between 0 and N — 1, inclusive, where N is the size of the
table. The table of values listed for the Values parameter must be less than 20,000
values long. Its first component is indexed by a zero-valued input. An error occurs if
the input value is out of the array bounds.

The input must be in the range: 0 < input < size of Values.

2. For details on using arrays of data for parameter values, refer to Understanding
Parameters (ptolemy) in the ADS Ptolemy Simulation (ptolemy) documentation.

3. For information regarding numeric special function component signals, refer to
Numeric Special Functions (numeric).

678



Advanced Design System 2011.01 - Numeric Components

TableInt

12

Description: Indexed Integer Lookup Table Output

Library: Numeric, Special Functions

Class: SDFTablelnt

C++ Code: See doc/sp_items/SDFTableInt.html under your installation directory.

Parameters

Name |Description Default Unit Type Range
Values |table of values to output |{-1, 1} int array

Pin Inputs

Pin [Name |Description Signal Type
1 |input int
Pin Outputs

Pin [Name Description [Signal Type
2 |output int

Notes/Equations

1. Tablelnt implements an integer-valued lookup table indexed by an integer-valued
input. The input must lie between 0 and N — 1, inclusive, where N is the size of the
table. The table of values listed for the Values parameter must be less than 20,000
values long. Its first component is indexed by a zero-valued input. An error occurs if
the input value is out of the array bounds.

The input must be in the range: 0 < input < size of Values.

2. For details on using arrays of data for parameter values, refer to Understanding
Parameters (ptolemy) in the ADS Ptolemy Simulation (ptolemy) documentation.

3. For information regarding numeric special function component signals, refer to
Numeric Special Functions (numeric).

679



Advanced Design System 2011.01 - Numeric Components

Toggle
|
h A
12 :--l.___q 4

Description: Data Toggle with Clock Input
Library: Numeric, Special Functions
Class: SDFToggle

Derived From: baseOmniSysNumericStar

Pin Inputs

Pin Name |Description Signal Type
1 |inputl |input signal 1 |complex

2 |input2 |input signal 2 lcomplex

3 |control |control signal |real

Pin Outputs

Pin [Name Description Signal Type
4 |output joutput signal |complex

Notes/Equations

1. Let
v 4 (t) = inputl

v, (t) = input2
v 5 (t) = control
Vv 4 (t) = output,

then
v,(%) when v4(£) 2 0.5

1=
v4l®) vi(t)  whenv,(#) <0.5

Here, v 4 (t), v, (t) and v 4 (t) are complex valued signals with real and imaginary
parts. If v 5 (t) is complex valued, its imaginary part is ignored and only the real part

is considered.
2. For information regarding numeric special function component signals, refer to
Numeric Special Functions (numeric).

680



Advanced Design System 2011.01 - Numeric Components

Description: Unwrap phase

Library: Numeric, Special Functions

Class: SDFUnwrap

C++ Code: See doc/sp_items/SDFUnwrap.html under your installation directory.

Parameters
Name Description Default Unit Type Range
OutPhase |initial output phase 0.0 real |(-co,
)
PrevPhase |initial wrapped phase of input signal for computing the first phase 0.0 real |(-co,
difference (phase change) )
Pin Inputs

Pin [Name Description Signal Type
1 Jinput real
Pin Outputs

Pin [Name Description [Signal Type
2 |output real

Notes/Equations

1. Unwrap unwraps a phase plot, removing discontinuities of magnitude 2 n. Unwrap
assumes that the phase never changes by more than n in one sample period; it also
assumes that the input is in the range [—n, n].

2. For information regarding numeric special function component signals, refer to
Numeric Special Functions (numeric).

681



	  SerDes Example Designs
	  8b10b Coder and Decoder
	  64b66b Coder and Decoder
	  Blind Adaptive Decision Feedback Equalizer
	  Adaptive Decision Feedback Equalizer with Training Sequence

	  WMAN Example Designs
	  Agilent Instrument Compatibility
	  WMAN IEEE 802.16 Specifications
	  WMAN System Designs
	  WMAN Design Example Descriptions
	  References

	  Numeric Advanced Comm Components
	  AddGuard
	  ConvolutionalCoder
	  CRC_Coder
	  CRC_Decoder
	  Deinterleaver802D
	  Demapper
	  Interleaver802
	  LoadIFFTBuff802
	  Mapper
	  MuxOFDMSym802
	  RMSE
	  ViterbiDecoder

	  Numeric Communications Components
	  8b10bCoder
	  8b10bDecoder
	  64b66bCoder
	  64b66bDecoder
	  ADPCM_Coder
	  ADPCM_Decoder
	  ADPCM_FromBits
	  ADPCM_ToBits
	  AWGN_Channel
	  BlindDFE
	  BlindFFE
	  BlockPredictor
	  CoderRS
	  DecoderRS
	  DeScrambler
	  DeSpreader
	  DFE
	  FFE
	  FreqPhase
	  HilbertSplit
	  InterleaveDeinterleave
	  M_PSK
	  NoiseChannel
	  NonlinearDistortion
	  PAM2Rec
	  PAM2Xmit
	  PAM4Rec
	  PAM4Xmit
	  PCM_BitCoder
	  PCM_BitDecoder
	  PhaseShift
	  PSK2Rec
	  PSK2Xmit
	  QAM4
	  QAM4Slicer
	  QAM16
	  QAM16Decode
	  QAM16Slicer
	  QAM64
	  QAM64Decode
	  QAM64Slicer
	  RaisedCosine
	  RaisedCosineCx
	  RecSpread
	  Scrambler
	  Spread
	  TelephoneChannel
	  WalshCoder
	  XmitSpread

	  Numeric Control Components
	  ActivatePath
	  ActivatePath2
	  AsyncCommutator
	  AsyncDistributor
	  Bus
	  BusMerge2
	  BusMerge3
	  BusMerge4
	  BusMerge5
	  BusMerge6
	  BusMerge7
	  BusMerge8
	  BusMerge9
	  BusSplit2
	  BusSplit3
	  BusSplit4
	  BusSplit5
	  BusSplit6
	  BusSplit7
	  BusSplit8
	  BusSplit9
	  Chop
	  ChopVarOffset
	  Commutator
	  Commutator2  
	  Commutator3
	  Commutator4
	  Delay
	  DeMux
	  DeMux2
	  Distributor
	  Distributor2
	  Distributor3
	  Distributor4
	  DownSample
	  DSampleWOffset
	  EnableUDSample
	  Fork
	  Fork2
	  Fork3
	  Fork4
	  Fork5
	  Fork6
	  Fork7
	  Fork8
	  Fork9
	  IfElse
	  InitDelay
	  Mux
	  Mux2
	  Repeat
	  Reverse
	  Trainer
	  Transpose
	  UpSample
	  VarDelay

	  Numeric Fixed-Point DSP Components
	  AbsSyn
	  AccumSyn
	  AddRegSyn
	  AddSyn
	  And2Syn
	  AndSyn
	  BarShiftSyn
	  BitFillSyn
	  BPSKSyn
	  BufferSyn
	  Bus8MergeSyn
	  Bus8RipSyn
	  BusMergeSyn
	  BusRipSyn
	  CastSyn
	  CombFiltSyn
	  Comp6Syn
	  CompSyn
	  ConstSyn
	  CountCombSyn
	  CounterSyn
	  Div2ClockSyn
	  DPRamRegSyn
	  DPRamSyn
	  DPSKSyn
	  DualNCOSyn
	  FIRSyn
	  FixedGainSyn
	  FixToFloatSyn
	  FloatToFixSyn
	  FSMSyn
	  GainSyn
	  IntegratorSyn
	  LCounterSyn
	  MultRegSyn
	  MultSyn
	  Mux2Syn
	  Mux3Syn
	  Mux4Syn
	  MuxSyn
	  Nand2Syn
	  NCOSyn
	  Nor2Syn
	  NotSyn
	  OQPSKSyn
	  Or2Syn
	  OrSyn
	  PI4DQPSKSyn
	  PSK8Syn
	  QPSKSyn
	  RamRegSyn
	  RamSyn
	  RegSyn
	  RomRegSyn
	  RomSyn
	  SerialFIRSyn
	  ShiftRegPPSyn
	  ShiftRegPSSyn
	  ShiftRegSPSyn
	  SineCosineSyn
	  SinkRespSyn
	  SinkStimSyn
	  SubRegSyn
	  SymFIRSyn
	  Xor2Syn
	  XorSyn
	  ZeroInterpSyn

	  Numeric Logic Components
	  DFF
	  DivByN
	  JKFF
	  LFSR
	  Logic
	  LogicAND
	  LogicAND2
	  LogicInverter
	  LogicLatch
	  LogicNAND
	  LogicNAND2
	  LogicNOR
	  LogicNOR2
	  LogicOR
	  LogicOR2
	  LogicXNOR
	  LogicXNOR2
	  LogicXOR
	  LogicXOR2
	  Multiple
	  Test
	  TestEQ
	  TestGE
	  TestGT
	  TestLE
	  TestLT
	  TestNE

	  Numeric Math Components
	  Abs
	  Add
	  Add2
	  AddCx
	  AddCx2
	  AddFix
	  AddFix2
	  AddInt
	  AddInt2
	  Average
	  AverageCx
	  AverageCxWOffset
	  Cos
	  DB
	  DivByInt
	  Exp
	  Floor
	  Gain
	  GainCx
	  GainFix
	  GainInt
	  Integrate
	  Ln
	  Math
	  MathCx
	  MaxMin
	  Modulo
	  ModuloInt
	  Mpy
	  Mpy2
	  MpyCx
	  MpyCx2
	  MpyFix
	  MpyFix2
	  MpyInt
	  MpyInt2
	  Reciprocal
	  SDC1
	  SDC2
	  SDC3
	  SDC4
	  SDCCx1
	  SDCCx2
	  SDCCx3
	  SDCCx4
	  Sgn
	  Sin
	  Sinc
	  Sqrt
	  Sub
	  SubCx
	  SubFix
	  SubInt
	  Trig
	  TrigCx
	  Variance

	  Numeric Matrix Components
	  Abs_M
	  Add2_M
	  AddCx2_M
	  AddCx_M
	  AddFix2_M
	  AddFix_M
	  AddInt2_M
	  AddInt_M
	  Add_M
	  AvgSqrErr_M
	  Conjugate_M
	  Delay_M
	  GainCx_M
	  GainFix_M
	  GainInt_M
	  Gain_M
	  Hermitian_M
	  InverseCx_M
	  InverseFix_M
	  InverseInt_M
	  Inverse_M
	  Kalman_M
	  MpyCx_M
	  MpyFix_M
	  MpyInt_M
	  Mpy_M
	  MpyScalarCx_M
	  MpyScalarFix_M
	  MpyScalarInt_M
	  MpyScalar_M
	  MxCom_M
	  MxDecom_M
	  PackCx_M
	  PackFix_M
	  PackInt_M
	  Pack_M
	  SampleMean_M
	  SubCx_M
	  SubFix_M
	  SubInt_M
	  Sub_M
	  SubMxCx_M
	  SubMxFix_M
	  SubMxInt_M
	  SubMx_M
	  SVD_M
	  TableCx_M
	  TableInt_M
	  Table_M
	  ToeplitzCx_M
	  ToeplitzFix_M
	  ToeplitzInt_M
	  Toeplitz_M
	  TransposeCx_M
	  TransposeFix_M
	  TransposeInt_M
	  Transpose_M
	  UnPkCx_M
	  UnPkFix_M
	  UnPkInt_M
	  UnPk_M

	  Numeric Signal Processing Components
	  Autocor
	  Biquad
	  BiquadCascade
	  BlockAllPole
	  BlockFIR
	  BlockLattice
	  BlockRLattice
	  Burg
	  ConvolCx
	  Convolve
	  CrossCorr
	  DelayEstimator
	  DTFT
	  FFT_Cx
	  FIR
	  FIR_Cx
	  FIR_Fix
	  Hilbert
	  IIR
	  IIR_Cx
	  IIR_Fix
	  Lattice
	  LevDur
	  LMS
	  LMS_Cx
	  LMS_Leak
	  LMS_OscDet
	  PattMatch
	  RLattice
	  SlidWinAvg

	  Numeric Sources
	  Bits
	  ComplexExp
	  Const
	  ConstCx
	  ConstFix
	  ConstInt
	  Cx_M
	  DataPattern
	  DiagonalCx_M
	  DiagonalFix_M
	  DiagonalInt_M
	  Diagonal_M
	  Fix_M
	  Float_M
	  IdentityCx_M
	  IdentityFix_M
	  IdentityInt_M
	  Identity_M
	  IID_Gaussian
	  IID_Uniform
	  ImpulseFloat
	  Int_M
	  NumericExpression
	  NumericSource
	  RampFix
	  RampFloat
	  RampInt
	  ReadFile
	  ReadFilePreProc
	  Rect
	  RectCx
	  RectCxDoppler
	  RectFix
	  SineGen
	  WaveForm
	  WaveFormCx
	  Window

	  Numeric Special Functions
	  AdaptLinQuant
	  Compress
	  DeadZone
	  Dirichlet
	  Expand
	  LatchClocked
	  Limit
	  LinQuantIdx
	  MuLaw
	  OrderTwoInt
	  PcwzLinear
	  Polynomial
	  Quant
	  QuantIdx
	  Quantizer
	  Quantizer2D
	  SchmittTrig
	  Table
	  TableCx
	  TableInt
	  Toggle
	  Unwrap


